(a)
Find the angular speed of the blade in radian per minute.
(a)

Answer to Problem 106E
Explanation of Solution
Given:
Diameter of the circular blade is 7.25 inches and rotates at 4800 revolutions per minutes.
Concept Used:
Linear velocity is the change of position of the body with respect to the time when it is travelling along the straight path whereas the angular velocity is the change of position of the body with respect to the time when it is travelling along the circular path.
1 revolution =
The formula for linear speed:
Calculation:
1 revolution =
Use the formula for
Thus the angular speed of the blade is
(b)
Find the linear speed of the saw teeth in inches per minute.
(b)

Answer to Problem 106E
Explanation of Solution
Given:
Diameter of the circular blade is 7.25 inches and rotates at 4800 revolutions per minutes.
Concept Used:
Linear velocity is the change of position of the body with respect to the time when it is travelling along the straight path whereas the angular velocity is the change of position of the body with respect to the time when it is travelling along the circular path.
1 revolution =
The formula for linear speed:
Calculation:
From the given angular speed
We can find the linear speed by using the formula
Where
Linear speed =
Thus, the linear speed of the saw teeth is
Chapter 4 Solutions
PRECALCULUS W/LIMITS:GRAPH.APPROACH(HS)
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





