Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 76CP
(a)
To determine
To derive Wien’s displacement law from Planck’s law.
(b)
To determine
To evaluate the value of the constant in the Wein’s displacement law and to compare it with Wein’s experimental value.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A blackbody is an object with a radiation spectrum that is dependent solely on its tempera-
ture. A blackbody spectrum (or spectral radiancy curve) is described by the Planck Radiation
Law.
(a)
i. Sketch the spectral radiancy curves for blackbodies with temperatures of T = 4000 K
and T = 6000 K, respectively. Describe the main differences between the two
curves in terms of the appropriate physical laws defined as a function of tempera-
ture.
ii. What is the wavelength at peak intensity for each blackbody? State the part of
the electromagnetic spectrum to which each wavelength belongs.
(b) Use the Planck Radiation Law to determine the power radiated per unit area between
the wavelengths A 500 nanometres and λ = 503 nanometres for the T 6000 K
blackbody. What fraction of the blackbody's radiancy lies in this wavelength range?
=
A) Calculate the de Broglie wavelength of a neutron (mn = 1.67493×10-27 kg) moving at one six hundredth of the speed of light (c/600). Enter at least 4 significant figures. (I got the answer 949.4 pm but it is wrong, please help)
B) Calculate the velocity of an electron (me = 9.10939×10-31 kg) having a de Broglie wavelength of 230.1 pm.
Through what potential difference ΔVΔV must electrons be accelerated (from rest) so that they will have the same wavelength as an x-ray of wavelength 0.130 nmnm?
Use 6.626×10−34 J⋅sJ⋅s for Planck's constant, 9.109×10−31 kgkg for the mass of an electron, and 1.602×10−19 CC for the charge on an electron. Express your answer using three significant figures.
=89.0 V
Through what potential difference ΔVΔV must electrons be accelerated so they will have the same energy as the x-ray in Part A?
Use 6.626×10−34 J⋅sJ⋅s for Planck's constant, 3.00×108 m/sm/s for the speed of light in a vacuum, and 1.602×10−19 CC for the charge on an electron. Express your answer using three significant figures.
Second question is what I need help on! Thanks!
Chapter 40 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 40.1 - Prob. 40.1QQCh. 40.2 - Prob. 40.2QQCh. 40.2 - Prob. 40.3QQCh. 40.2 - Prob. 40.4QQCh. 40.3 - Prob. 40.5QQCh. 40.5 - Prob. 40.6QQCh. 40.6 - Prob. 40.7QQCh. 40 - Prob. 1OQCh. 40 - Prob. 2OQCh. 40 - Prob. 3OQ
Ch. 40 - Prob. 4OQCh. 40 - Prob. 5OQCh. 40 - Prob. 6OQCh. 40 - Prob. 7OQCh. 40 - Prob. 8OQCh. 40 - Prob. 9OQCh. 40 - Prob. 10OQCh. 40 - Prob. 11OQCh. 40 - Prob. 12OQCh. 40 - Prob. 13OQCh. 40 - Prob. 14OQCh. 40 - Prob. 1CQCh. 40 - Prob. 2CQCh. 40 - Prob. 3CQCh. 40 - Prob. 4CQCh. 40 - Prob. 5CQCh. 40 - Prob. 6CQCh. 40 - Prob. 7CQCh. 40 - Prob. 8CQCh. 40 - Prob. 9CQCh. 40 - Prob. 10CQCh. 40 - Prob. 11CQCh. 40 - Prob. 12CQCh. 40 - Prob. 13CQCh. 40 - Prob. 14CQCh. 40 - Prob. 15CQCh. 40 - Prob. 16CQCh. 40 - Prob. 17CQCh. 40 - The temperature of an electric heating element is...Ch. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60APCh. 40 - Prob. 61APCh. 40 - Prob. 62APCh. 40 - Prob. 63APCh. 40 - Prob. 64APCh. 40 - Prob. 65APCh. 40 - Prob. 66APCh. 40 - Prob. 67APCh. 40 - Prob. 68APCh. 40 - Prob. 69APCh. 40 - Prob. 70APCh. 40 - Prob. 71APCh. 40 - Prob. 72CPCh. 40 - Prob. 73CPCh. 40 - Prob. 74CPCh. 40 - Prob. 75CPCh. 40 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a black body of surface area 22.0 cm² and temperature 5700 K. (a) How much power does it radiate? 131675.5 W (b) At what wavelength does it radiate most intensely? 508.421 nm (c) Find the spectral power per wavelength at this wavelength. Remember that the Planck intensity is "intensity per unit wavelength", with units of W/m³, and "power per unit wavelength" is equal to that intensity times the surface area, with units of W/m 131.5775 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. W/marrow_forwardFor a black body, the temperature and the wavelength of the emission maximum, Amax, are related by Wein's Law, expressed as: T/°C λmax/nm Values of Amax from a small pinhole in an electrically heated container were determined at a series of temperatures. The results are given below. Deduce the value of Planck's constant. 1000 2181 c = 3.00 x 108 m/s 1500 1600 λmaxT = 2000 1240 k= 1.38 x 10-34 J-S hc 4.965k 2500 1035 3000 878 3500 763arrow_forwardPART A: A metal surface is illuminated with photons with a frequency f=1.5×10^15 Hz. The stopping potential for electrons photoemitted from the surface is 3.6 V. What is the work function of the metal? Answer= 2.6 eV PART B: A certain metal has a work function ϕ. What is the maximum photon wavelength that will produce photoemission? Express your answer in terms of ϕ,Planck's constant h, and the speed of light c. Answer= λ =hc/ϕ PART C: Electrons emitted from a metal surface with a work function ϕ = 2.8 eV have a corresponding stopping potential of V0 = 3.6 V. If a metal with a work functionϕnew = 2.2 eV is illuminated by the same wavelength of light, what will be the new stopping potential? Express your answer with the appropriate units. *Please answer Part C*arrow_forward
- A neutron of mass 1.675 × 10-27 kg has a de Broglie wavelength of 7.8x10-12 m. What is the kinetic energy (in eV) of this non-relativistic neutron? Please give your answer with two decimal places. 1 eV = 1.60 × 10-19 J, h = 6.626 × 10-34 J ∙ s.arrow_forwardIn a photoelectric experiment it is found that a stopping potential of 1.00 V is needed to stop all the electrons when incident light of wavelength 225 nm is used and 1.5 V is needed for light of wavelength 207 nm. From these data determine Planck's constant. (Enter your answer, in eV s, to at least four significant figures.) 4.2367e-15 X ev s From these data determine the work function (in eV) of the metal. 4.6 X evarrow_forwardFor the thermal radiation from an ideal blackbody radiator with a surface temperature of 2000 K, let Ic represent the intensity per unit wavelength according to the classical expression for the spectral radiancy and IP represent the corresponding intensity per unit wavelength according to the Planck expression.What is the ratio Ic/IP for a wavelength of (a) 400 nm (at the blue end of the visible spectrum) and (b) 200 mm (in the far infrared)? (c) Does the classical expression agree with the Planck expression in the shorter wavelength range or the longer wavelength range?arrow_forward
- UV radiation having a wavelength of 84 nm falls on gold metal, to which electrons are bound by 4.82 eV. What is the maximum velocity of the ejected photoelectrons? No need to use relativistic formulas in this case, so you can just use the standard formula KE =12mv2. The correct answer is 1.87E6 m/s how do I get that?arrow_forwardThe intensity of blackbody radiation peaks at a wavelength of 613 nm. (a) What is the temperature (in K) of the radiation source? (Give your answer to at least 3 significant figures.) K (b) Determine the power radiated per unit area (in W/m?) of the radiation source at this temperature. W/m2arrow_forwardThe two spherical bodies A (radius 6 cm) and B (radius 18 cm) are at temperatures T1 and T2, respectively. The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm. Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to that of B?arrow_forward
- I know how to graph in excel, but i am not sue how to find the work functionarrow_forwardA photon of frequency f undergoes Compton scattering from an electron at rest and scatters through an angle f. The frequency of the scattered photon is f′. How is f′ related to f ? Does your answer depend on f? Explain.arrow_forwardDescribe a typical nuclear fusion process with a neat sketch. Calculate the de Broglie wavelength of an electron having a mass of 9.11 x 10-31 kg with a Kinetic energy of 90 eV. The value of the Planck's constant is equal to 6.63 * 10-34 Js and 1 eV is equal to 1.602 x 10-19 J. How Raman scattering occurs?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning