Concept explainers
(a)
The power
(a)
Answer to Problem 12P
The power radiated by the black body is
Explanation of Solution
Write the expression for the power radiated by the black body.
Here,
Conclusion:
Substitute
Thus, the power radiated by the black body is
(b)
The wavelength at which the blackbody radiate most intensely.
(b)
Answer to Problem 12P
The wavelength at which the blackbody radiate most intensely is
Explanation of Solution
Write the equation for the wavelength at which the blackbody radiate most intensely.
Here,
Conclusion:
Substitute
Thus, the wavelength at which the blackbody radiate most intensely is
(c)
The spectral power per wavelength interval at
(c)
Answer to Problem 12P
The spectral power per wavelength interval at
Explanation of Solution
Write the equation for
Here,
Write the equation for
Here,
Write the equation for the power per wavelength interval.
Substitute
Conclusion:
Substitute
Substitute
Substitute
Thus, the spectral power per wavelength interval at
(d)
The spectral power per wavelength interval at
(d)
Answer to Problem 12P
The spectral power per wavelength interval at
Explanation of Solution
From the equation (V) in part (c), the spectral power per wavelength is.
Conclusion:
Substitute
Thus, the spectral power per wavelength interval at
(e)
The spectral power per wavelength interval at
(e)
Answer to Problem 12P
The spectral power per wavelength interval at
Explanation of Solution
From the equation (V) in part (c), the spectral power per wavelength is.
Conclusion:
Substitute
Thus, the spectral power per wavelength interval at
(f)
The spectral power per wavelength interval at
(f)
Answer to Problem 12P
The spectral power per wavelength interval at
Explanation of Solution
From the equation (V) in part (c), the spectral power per wavelength is.
Conclusion:
Substitute
Thus, the spectral power per wavelength interval at
(g)
The spectral power per wavelength interval at
(g)
Answer to Problem 12P
The spectral power per wavelength interval at
Explanation of Solution
From the equation (V) in part (c), the spectral power per wavelength is.
Conclusion:
Substitute
Thus, the spectral power per wavelength interval at
(h)
The spectral power per wavelength interval at
(h)
Answer to Problem 12P
The spectral power per wavelength interval at
Explanation of Solution
From the equation (V) in part (c), the spectral power per wavelength is.
Conclusion:
Substitute
Thus, the spectral power per wavelength interval at
(I)
The spectral power per wavelength interval at
(I)
Answer to Problem 12P
The spectral power per wavelength interval at
Explanation of Solution
From the equation (V) in part (c), the spectral power per wavelength is.
Conclusion:
Substitute
Thus, the spectral power per wavelength interval at
(J)
The power radiated by the object as visible light.
(J)
Answer to Problem 12P
The power radiated by the object as visible light is
Explanation of Solution
The wavelengths
Write the equation for the power radiated.
Here,
Conclusion:
The average power is calculated from the visible area.
Substitute
Thus, the power radiated by the object as visible light is
Want to see more full solutions like this?
Chapter 40 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forwardNo chatgpt pls will upvotearrow_forward
- 14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forwardNo chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forward
- Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning