Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 40, Problem 38P

(a)

To determine

The amplitude of the electric field of the helium-neon laser.

(a)

Expert Solution
Check Mark

Answer to Problem 38P

The amplitude of the electric field is 14.0kV/m.

Explanation of Solution

The diameter of the beam of laser is 1.75mm. The laser delivers 2.00×1018photons/s. The wavelength of the photon is 633nm.

Write the formula for the energy of a single photon.

    E=hcλ                                                                                                             (I)

Here, E is the energy of single photon, h is the Planck’s constant, c is the speed of light in vacuum, and λ is the wavelength.

Write the formula for the power carried by the laser beam.

    P=En                                                                                                           (II)

Here, P is the power carried by the beam, n is the number of photons emitted per second.

Write the formula for the average poynting vector.

    Savg=Pπr2                                                                                                     (III)

Here, Savg is the average poynting vector, P is the power, and r is the radius of the beam.

Write the formula for the average poynting vector in terms of electric field.

    Savg=Emax22μ0c

Here, Emax is the amplitude of electric field, and μ0 is the permeability of free space.

Re-write the above equation to get an expression for Emax.

    Emax=2μ0cSavg                                                                                               (IV)

Conclusion:

Substitute 6.626×1034Js for h, 3.00×108m/s for c, 633nm for λ in equation (I) to get E.

    E=(6.626×1034Js)(3.00×108m/s)633nm=(6.626×1034Js)(3.00×108m/s)633×109m=3.14×1019J

Substitute 3.14×1019J for E, 2.00×1018photons/s for n in equation (II) to get P.

    P=(2.00×1018photons/s)(3.14×1019J/photon)=0.628W

Substitute 0.628W for P, 1.75mm for r in equation (III) to get Savg.

    Savg=0.628Wπ(1.75mm2)2=0.628Wπ(1.75×103m2)2=2.61×105W/m2

Substitute 2.61×105W/m2 for Savg, 4π×107Tm/A for μ0, 3.00×108m/s for c in equation (IV) to determine Emax.

    Emax=2(4π×107Tm/A)(3.00×108m/s)(2.61×105W/m2)=1.40×104N/C=1.40×104V/m=14.0kV/m

The amplitude of the electric field is 14.0kV/m.

(b)

To determine

The amplitude of the magnetic field of the helium-neon laser.

(b)

Expert Solution
Check Mark

Answer to Problem 38P

The amplitude of the magnetic field is 46.8μT.

Explanation of Solution

The diameter of the beam of laser is 1.75mm. The laser delivers 2.00×1018photons/s. The wavelength of the photon is 633nm.

Write the formula for the magnitude of the magnetic field.

    Bmax=Emaxc

Here, Emax is the amplitude of electric field, Bmax is the amplitude of the magnetic field, and c is the speed of light in free space.

Conclusion:

Substitute 14.0kV/m for Emax, 3.00×108m/s for c to get Bmax.

    Bmax=14.0kV/m3.00×108m/s=1.40×104N/C3.00×108m/s=4.68×105T=46.8μT

The amplitude of the magnetic field is 46.8μT.

(c)

To determine

The force exerted by the beam on a perfectly reflecting surface when it is incident perpendicularly.

(c)

Expert Solution
Check Mark

Answer to Problem 38P

The force exerted on the perfectly reflecting surface is 4.19nN.

Explanation of Solution

The diameter of the beam of laser is 1.75mm. The laser delivers 2.00×1018photons/s. The wavelength of the photon is 633nm.

Write the formula for the force exerted on the perfectly reflecting surface.

    F=2Pc

Here, F is the force, P is the power, and c is the speed of light in vacuum.

Conclusion:

Substitute 0.628W for P, 3.00×108m/s for c to get F.

    F=2(0.628W)3.00×108 m/s=4.19×109N=4.19nN

The force exerted on the perfectly reflecting surface is 4.19nN.

(d)

To determine

The mass of the ice melted if the beam of laser is absorbed by an ice cube.

(d)

Expert Solution
Check Mark

Answer to Problem 38P

The mass of the ice melted if the beam of laser is absorbed by an ice cube is 10.2g.

Explanation of Solution

The diameter of the beam of laser is 1.75mm. The laser delivers 2.00×1018photons/s. The wavelength of the photon is 633nm.

Write the formula for the mass of ice melted.

    m=PtL

Here, m is the mass of the ice melted, P is the power, L is the latent heat of fusion and t is the time.

Conclusion:

Substitute 0.628W for P, 1.50h for t, 3.33×105J/kg for L to get m.

    m=(0.628W)(1.50h)3.33×105J/kg=(0.628W)[1.50×3600s]3.33×105J/kg=1.02×102kg=10.2g

The mass of the ice melted if the beam of laser is absorbed by an ice cube is 10.2g.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 40 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 40 - Prob. 4OQCh. 40 - Prob. 5OQCh. 40 - Prob. 6OQCh. 40 - Prob. 7OQCh. 40 - Prob. 8OQCh. 40 - Prob. 9OQCh. 40 - Prob. 10OQCh. 40 - Prob. 11OQCh. 40 - Prob. 12OQCh. 40 - Prob. 13OQCh. 40 - Prob. 14OQCh. 40 - Prob. 1CQCh. 40 - Prob. 2CQCh. 40 - Prob. 3CQCh. 40 - Prob. 4CQCh. 40 - Prob. 5CQCh. 40 - Prob. 6CQCh. 40 - Prob. 7CQCh. 40 - Prob. 8CQCh. 40 - Prob. 9CQCh. 40 - Prob. 10CQCh. 40 - Prob. 11CQCh. 40 - Prob. 12CQCh. 40 - Prob. 13CQCh. 40 - Prob. 14CQCh. 40 - Prob. 15CQCh. 40 - Prob. 16CQCh. 40 - Prob. 17CQCh. 40 - The temperature of an electric heating element is...Ch. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60APCh. 40 - Prob. 61APCh. 40 - Prob. 62APCh. 40 - Prob. 63APCh. 40 - Prob. 64APCh. 40 - Prob. 65APCh. 40 - Prob. 66APCh. 40 - Prob. 67APCh. 40 - Prob. 68APCh. 40 - Prob. 69APCh. 40 - Prob. 70APCh. 40 - Prob. 71APCh. 40 - Prob. 72CPCh. 40 - Prob. 73CPCh. 40 - Prob. 74CPCh. 40 - Prob. 75CPCh. 40 - Prob. 76CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning