Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 44P
To determine
To calculate:
(a) the kinetic energy of the electron after the first collision.
(b) the wavelength λ1 associated with the first photon.
(c) the energy E1 associated with the first photon.
(d) the wavelength λ2 associated with the second photon.
(e) the energy E2 associated with the second photon..
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In positron-emission tomography (PET) used in medical research and diagnosis, compounds containing unstable nuclei that emit
positrons are introduced into the brain, destined for a site of interest in the brain. When a positron is emitted, it goes only a short
distance before coming nearly to rest. It forms a bound state with an electron, called "positronium", which is rather similar to a
hydrogen atom. The binding energy of positronium is very small compared to the rest energy of an electron. After a short time the
positron and electron annihilate. In the annihilation, the positron and the electron disappear, and all of their rest energy goes into two
photons (particles of light) which have zero mass; all their energy is kinetic energy. These high energy photons, called "gamma rays", are
emitted at nearly 180° to each other.
What energy of gamma ray (in MeV, million electron volts) should each of the detectors be made sensitive to? (The mass of an electron
or positron is 9 x 10-31 kg.…
When an alpha particle collides elastically with a nucleus, the nucleus recoils. Suppose a 6.00 MeV alpha particle has a head-on elastic collision with a silver-108 nucleus that is initially at rest. (a) What is the kinetic energy of the recoiling nucleus? MeV (b) What is the kinetic energy of the rebounding alpha particle? MeV
(a) Show that the speed of an electron in the nth Bohr orbit of hydrogen is αc/n, where α is the fine structure constant, equal to e2/4πε0ħc. (b) What would be the speed in a hydrogen like atom with a nuclear charge of Ze?
Chapter 40 Solutions
Fundamentals of Physics Extended
Ch. 40 - Prob. 1QCh. 40 - Prob. 2QCh. 40 - Prob. 3QCh. 40 - Prob. 4QCh. 40 - Prob. 5QCh. 40 - Prob. 6QCh. 40 - Prob. 7QCh. 40 - Figure 40-22 shows three points at which a spin-up...Ch. 40 - Prob. 9QCh. 40 - Prob. 10Q
Ch. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 1PCh. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - SSM What is the acceleration of a silver atom as...Ch. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Assume that in the SternGerlach experiment as...Ch. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Show that the number of states with the same...Ch. 40 - Prob. 29PCh. 40 - For a helium atom in its ground state, what are...Ch. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62PCh. 40 - Prob. 63PCh. 40 - Prob. 64PCh. 40 - Prob. 65PCh. 40 - Prob. 66PCh. 40 - Prob. 67PCh. 40 - Prob. 68PCh. 40 - Prob. 69PCh. 40 - Prob. 70PCh. 40 - Prob. 71PCh. 40 - Prob. 72PCh. 40 - Prob. 73PCh. 40 - Prob. 74PCh. 40 - Prob. 75PCh. 40 - Prob. 76PCh. 40 - Prob. 77PCh. 40 - Prob. 78PCh. 40 - Prob. 79P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- X rays with a wavelength of 71 pm are directed onto a gold foil and eject tightly bound electrons from the gold atoms.The ejected electrons then move in circular paths of radius r in a region of uniform magnetic field . For the fastest of the ejected electrons, the product Br is equal to 1.88 * 10-4 T.m. Find (a) the maximum kinetic energy of those electrons and (b) the work done in removing them from the gold atoms.arrow_forwardB) A Hydrogen atom initially in its third level, emitted a photon and ends down in its ground state. What must have been the frequency of the photon? Now the electron makes spontaneous absorb and comes back to the third level. What are the possible frequencies of the photons absorbed during this process?arrow_forward= = Imagine that we have a box that emits electrons in a definite but unknown spin state y). If we send electrons from this box through an SGz device, we find that 20% are determined to have Sz +ħ and 80% to have S₂ -ħ. If we send electrons from this box through an SGx device, we find that 90% are determined to have Sx +ħ and 10% to have Sx Determine the state vector for electrons emerging from the box. You may assume that the vector components are real. -1/ħ. = -arrow_forward
- An atom in a state with its orbital quantum number l = 1 decays to its ground state (with l = 0). A photon of wavelength 630.000 nm is emitted in the process. When the same process takes place in the presence of an intense magnetic field, the following change in the spectrum is observed. With the magnetic field present, one of the emitted lines observed now has a wavelength of 630.030 nm. Which of the following wavelengths would you expect to be also present? Group of answer choices 630.120 nm 630.060 nm 630.090 nm 629.910 nm 629.970 nmarrow_forwardb. A photon of wavelength (0+ 22) x 10-12 mis collided with an electron from a carbon block and the scattered photon is detected at (0+75)° to the incident beam. Find the energy absorbed by the recoil electron.arrow_forward192 EV (tm) {√(x2m +E+²) - N√ (x 2 m ) 1² PROBLEM 3. When a small correction 8U() is added to the potential energy U = −a!r, the paths of finite motion are no longer closed, and at each revolution the perihelion is dís- placed through a small angle 8. Find 8 when (a) SU B/r², (b) dU = 2/2³. =arrow_forward
- A PET scan detects the product of positron electron annihilation. A positron and an electron annihilate and create 2 photons. (a) The wavelength of the photons will not be the same as the deBroglie wavelength of the positron and electron. Explain why. (b) The positron and electron each have a kinetic energy of 60 keV. What is the wavelength of each photon?arrow_forwardAlpha particles of kinetic energy 5.4 MeV are incident at a rate of 3.2 x 107 per second on a copper foil of thickness 3.2 x 10-6 m. A circular detector of diameter 1.0 cm is placed 13 cm from the foil at an angle of 30° with the direction of the incident alpha particles. At what rate does the detector measure scattered alpha particles? (The molar mass of copper is 63.5 g/mol and its density is 8.9 g/cm³.) Additional Materials Bookarrow_forwardCan nuclei of the same element have different values of Z? Of N? Of A? Can nuclei of different elements have the same values of Z? Of N? Of A?arrow_forward
- Please do 113arrow_forwardA Deuterium nucleus is accelerated to a velocity v = 0,9c on a trajectory described by the equation y = √0,49x2 m. Determine the radiated power and the periodic loss of energy suffered by the accelerated particle.arrow_forwardUsing the Thomson model, estimate the average scatter- ing angle when alpha particles (z = 2) with kinetic energy 3 MeV are scattered from gold (Z = 79). The atomic radius of gold is 0.179 nm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning