Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 24P
To determine
To calculate:
(a) the first excited state of the 7-electron system in a given box, in multiples of
(b) the second excited state of the 7-electron system in a given box, in multiples of
(c) the third excited state of the 7-electron system in a given box, in multiples of
Then
(d) Construct an energy-level diagram for the lowest four energy levels.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We are going to use Heisenberg's uncertainty principle to estimate the ground-
state energy of hydrogen. In our model, the electron is confined in a one-
dimensional well with a length about the size of hydrogen, so that Ax = 0.0529
nm. Estimate Ap, and then assume that the ground-state energy is
roughly Ap2/2me. (Give your answer in Joules or electron-volts.)
Question 1.
An electron with a total energy E moves in a 1-D region 1. At x=0, there is a
potential energy step of height V. (as shown in the figure 2). Where the wave functions
41(x) = Aelax+ Be-iax, 42(x) = Ce-x/b+ Dex/b
1)
H)
Find the real numbers a and b in terms of E and Vo.
State whether the electron energy is greater than or less than VO and why.
Incident particles
Region I
V(x)
Vo
x=0
Region II
Figure 2. Step potential function
Impurities in solids can be sometimes described by a particle-in-a-box model. Suppose He is substituted for Xe, and assume a particle-in-a-cubic-box model, the length of whose sides is equal to the atomic diameter of Xe (≈ 2.62 Å). Compute the lowest excitation energy for the He atom’s motion. (This is the energy difference between the ground state and the first excited state.)
Chapter 40 Solutions
Fundamentals of Physics Extended
Ch. 40 - Prob. 1QCh. 40 - Prob. 2QCh. 40 - Prob. 3QCh. 40 - Prob. 4QCh. 40 - Prob. 5QCh. 40 - Prob. 6QCh. 40 - Prob. 7QCh. 40 - Figure 40-22 shows three points at which a spin-up...Ch. 40 - Prob. 9QCh. 40 - Prob. 10Q
Ch. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 1PCh. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - SSM What is the acceleration of a silver atom as...Ch. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Assume that in the SternGerlach experiment as...Ch. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Show that the number of states with the same...Ch. 40 - Prob. 29PCh. 40 - For a helium atom in its ground state, what are...Ch. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62PCh. 40 - Prob. 63PCh. 40 - Prob. 64PCh. 40 - Prob. 65PCh. 40 - Prob. 66PCh. 40 - Prob. 67PCh. 40 - Prob. 68PCh. 40 - Prob. 69PCh. 40 - Prob. 70PCh. 40 - Prob. 71PCh. 40 - Prob. 72PCh. 40 - Prob. 73PCh. 40 - Prob. 74PCh. 40 - Prob. 75PCh. 40 - Prob. 76PCh. 40 - Prob. 77PCh. 40 - Prob. 78PCh. 40 - Prob. 79P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider hydrogen in the ground state, 100 . (a) Use the derivative to determine the radial position for which the probability density, P(r), is a maximum. (b) Use the integral concept to determine the average radial position. (This is called the expectation value of the electrons radial position.) Express your answers into terms of the Bohr radius, a0. Hint: The expectation value is the just average value, (c) Why are these values different?arrow_forwardIn the subshell L=3 , (a) what is the greatest (most positive) value, (b) how many states are available with the greatest mL value, and (c) what is the total number of states available in the subshell?arrow_forwardWhat is the answerarrow_forward
- An electron (restricted to one dimension) is trapped between two rigid walls 1.26 nm apart. The electron's energy is approximately 24 eV. a) What is the quantum number n for the energy state that the electron occupies? b) Based on the quantum number you found in part (a), calculate a more precise value for the electron's energy (in eV), expressed to at least three significant figures. (Use any physical constants or unit conversions to at least four significant figures in your calculations.)arrow_forward▼ Part A For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ap at distance aB? ▸ View Available Hint(s) 15. ΑΣΦ ? Part B For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ag at distance ag from the proton? ▸ View Available Hint(s) [5] ΑΣΦ ? Submit Submitarrow_forwardA rectangular corral of widths Lx= L and Ly = 2L containsseven electrons. What multiple of h2/8mL2 gives the energy of theground state of this system? Assume that the electrons do not inter-act with one another, and do not neglect spin.arrow_forward
- Consider a quantum mechanical ideal harmonic oscillator having a zero point energy of 1.4*10^-20J. how much energy could be released if the oscillator makes a transition from n=4 to n=2 states? a)0.69*10^19J b)2.88*10^-20J c)5.76*10^20J d)none are correctarrow_forwardA hypothetical molecule oscillates with a natural frequency of 1.4 × 1013 Hz. Part (a) What is the energy difference, in electron volts, between adjacent harmonic oscillator states of the hypothetical molecule? Part (b) What is the quantum number of the state of the hypothetical molecule that has an energy of 0.75 eV? Round your answer to the nearest integer.arrow_forwardAssume that the nucleus of an atom can be regarded as a three-dimensional box of width 2:10-¹4 m. If a proton moves as a particle in this box, find (a) the ground-state energy of proton in MeV and (b) the energies of the first excited state. (c) What are the degenerates of these states? Constants: h = 6.626-10-34 [J-s], m = 1.673-10-27 [kg] and ħ=h/2π.arrow_forward
- Problem 1. Two State System Consider an atom with only two states: a ground state with energy 0, and an excited state with energy A. Determine the mean energy (e) and variance in energy (de). Sketch the mean energy versus A/k T.arrow_forwardA hypothetical atom has energy levels uniformly separated by 1.2 eV.At a temperature of 2000 K, what is the ratio of the number of atoms in the 13th excited state to the number in the 11th excited state?arrow_forwardProblem 3. Consider the two example systems from quantum mechanics. First, for a particle in a box of length 1 we have the equation h² d²v 2m dx² EV, with boundary conditions (0) = 0 and (1) = 0. Second, the Quantum Harmonic Oscillator (QHO) V = EV h² d² 2m da² +ka²) 1 +kx² 2 (a) Write down the states for both systems. What are their similarities and differences? (b) Write down the energy eigenvalues for both systems. What are their similarities and differences? (c) Plot the first three states of the QHO along with the potential for the system. (d) Explain why you can observe a particle outside of the "classically allowed region". Hint: you can use any state and compute an integral to determine a probability of a particle being in a given region.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning