Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 13Q
To determine
To give reasons:
as to how the Neon E2 level is excited in an He-Ne laser.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A mercury atom emits light at many wavelengths, two of which are at (1) 404.7 nm and (2) 435.8 nm. Both of these transitions are to the same final state. Determine the energy of each emitted wavelength (in J).
O The electron transitions to the n 2 state.
O The electron transitions to the n = 5 state.
O The electron is captured by the nucleus.
A hypothetical atom has three energy levels: the ground-state level and levels 1.25 eV and 2.75
eV above the ground state. When this atom is in the ground state, what wavelengths of light
may it absorb? Let Planck's constant h = 4.136 x 10 eV s, and the speed of light c= 3.00 x
10° m/s.
O451 nm and 993 nm
O 451 nm, 827 nm, and 993 nm
O 827 nm and 993 nm
O451 nm and 827 nm
The first five energy levels of the hydrogen atom are at −13.6 eV, −3.4 eV,−1.51 eV, −0.85 eV, and −0.54 eV. The emission spectrum of a hydrogen plasma lamp is a set of bright lines corresponding to all the possible transitions between these five levels.Sketch the far ultraviolet part of the spectrum you would expect from 80 nm wavelength to 130 nm. You should provide an x-axis with tickmarks and labels in nm, and label each brightline with its wavelength. Show your calculations of the wavelengths.
Chapter 40 Solutions
Fundamentals of Physics Extended
Ch. 40 - Prob. 1QCh. 40 - Prob. 2QCh. 40 - Prob. 3QCh. 40 - Prob. 4QCh. 40 - Prob. 5QCh. 40 - Prob. 6QCh. 40 - Prob. 7QCh. 40 - Figure 40-22 shows three points at which a spin-up...Ch. 40 - Prob. 9QCh. 40 - Prob. 10Q
Ch. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 1PCh. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - SSM What is the acceleration of a silver atom as...Ch. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Assume that in the SternGerlach experiment as...Ch. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Show that the number of states with the same...Ch. 40 - Prob. 29PCh. 40 - For a helium atom in its ground state, what are...Ch. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62PCh. 40 - Prob. 63PCh. 40 - Prob. 64PCh. 40 - Prob. 65PCh. 40 - Prob. 66PCh. 40 - Prob. 67PCh. 40 - Prob. 68PCh. 40 - Prob. 69PCh. 40 - Prob. 70PCh. 40 - Prob. 71PCh. 40 - Prob. 72PCh. 40 - Prob. 73PCh. 40 - Prob. 74PCh. 40 - Prob. 75PCh. 40 - Prob. 76PCh. 40 - Prob. 77PCh. 40 - Prob. 78PCh. 40 - Prob. 79P
Knowledge Booster
Similar questions
- The first five energy levels of the hydrogen atom are at −13.6 eV, −3.4 eV, −1.51 eV, −0.85 eV, and −0.85 eV. The absorption spectrum of a hydrogen plasma is a continuous spectrum with dark lines corresponding to all the possible transitions between these five levels. Sketch the spectrum you would expect to see at wavelengths from 400 nm to 700 nm. You do not need to use colour in your sketch, but you should provide an x-axis with tickmarks and labels in nm, label the approximate red, green and blue regions, and label each dark line with its wavelength. Show your calculations of the wavelengths. (Hint: you should show three dark lines.)arrow_forwardThe figure shows a model of the energy levels of an atom. The atom is initially in state W, which is the ground state for the atom. After a short amount of time, the atom then transitions to state X. The atom then transitions to state Y before transitioning to state Z. The atom then transitions back to state W. Which of the following descriptions is correct about the atom as it transitions from state W to each subsequent state until it finally returns to its original state?arrow_forwardThe electron in a hydrogen atom jumps from the E5 eV ev E₁ = = What is the (positive) energy and wavelength of the photon emitted? eV E photon λ = λ = = n₁ 5 state to the nf = nm Follow the same steps to find the wavelength of the photon emitted when the electron in the hydrogen atom jumps from the n = nm = 1 state. What are the energies of these two states? 13 state to the and n₁ = 4 state.arrow_forward
- A sodium atom in one of the states labeled “Lowest excited levels” in Fig. remains in that state, on average, for 1.6 * 10-8 s before it makes a transition to the ground state, emitting a photon with wavelength 589.0 nm and energy 2.105 eV. What is the uncertainty in energy of that excited state? What is the wavelength spread of the corresponding spectral line?arrow_forwardWhen a hydrogen atom undergoes a transition from the n = 2 to the n = 1 level, a photon with l = 122 nm is emitted. If the atom is modeled as an electron in a one-dimensional box, what is the ground-state energy in order for the n = 2 to n = 1 transition to correspond to emission of a photon of this energy?arrow_forwarda)Suppose a hydrogen molecule in its ground state is dissociated by absorbing a photon of ultraviolet light, causing the two hydrogen atoms to fly apart. What photon energy will give each atom a speed of 19 km/s? The mass of a hydrogen atom is 1.7×10^−27 kg Express your answer to two significant figures and include the appropriate units.arrow_forward
- Consider photons incident on a hydrogen atom. (a) A transition from the n = 4 to the n = 7 excited-state requires the absorption of a photon of what minimum energy? eV(b) A transition from the n = 1 ground state to the n = 6 excited state requires the absorption of a photon of what minimum energy? eVarrow_forwardA hydrogen atom makes a transition from the n=8 state to the n = 4 state. What is the wavelength of the emitted photon in micrometers? Please give your answer with two decimal places. The lowest level energy state of hydrogen is -13.6 eV. (h = 6.626 × 10-34 J ∙ s, 1 eV = 1.60 × 10-19 J, c = 3.00 × 108 m/s)arrow_forwardChapter 39, Problem 044 A hydrogen atom in a state having a binding energy (the energy required to remove an electron) of -1.51 eV makes a transition to a state with an excitation energy (the difference between the energy of the state and that of the ground state) of 10.200 eV. (a) What is the energy of the photon emitted as a result of the transition? What are the (b) higher quantum number and (c) lower quantum number of the transition producing this emission? Use -13.60 eV as the binding energy of an electron in the ground state. (a) Number Units (b) Number Units (c) Number Unitsarrow_forward
- An atom has three energy states: -15 eV, -12 eV and -6 eV. If a beam of photons with photons of energy 8 eV is directed at these atoms, which of the following will happen? Some photons will be absorbed and electrons will transition from -15 eV state to -6 eV state. Some electrons will transition from -15 eV to -12 eV reducing the energy of some photons. Some electrons will transition from -12 eV to -6 eV reducing the energy of some photons by one-third. No photon absorption will take place and the number of electrons in each level will stay unchanged.arrow_forwardA three-level system of atoms has N₁ atoms in level E₁, N₂ in level E₂ and N in level E₂(N₂>N>N3 and E₁arrow_forwardn = 1 E = -13.6 ev n= 4 E = -0.85 ev n=5 n= 2 E = -0.54 ev E = -3.4 ev n= 3 E = -1.51 ev a) At what wavelength (in meters) does the n = 3 → 2 transition of hydrogen occur?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning