Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 16P
To determine
Show that the wave function is a solution to the Schrodinger equation.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A one-dimensional harmonic oscillator wave function is ψ = Axe-bx2(a) Show that ψ satisfies as shown. (b) Find b and the total energy E. (c) Is this wave function for the ground state or for the first excited state?
Let Ψ (x, t) = (A / (a2 + x2)) exp (-i 2 π E t / h ) be a normalized solution to Schrodinger’s equationfor constants A, a, and E.(a) What is A in terms of a?(b) What is the potential function V(x)?(c) Evaluate Δx Δp. Is the uncertainty principle satisfied?
Solving the Schrödinger equation for a particle of energy E 0
Calculate the values of the constants D, C, B, and A if knownCalculate the values of
the constants D, C, B, and A if known
and
2mE
2m(Vo-E)
a =
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 40.1 - Prob. 40.1QQCh. 40.2 - Prob. 40.2QQCh. 40.2 - Prob. 40.3QQCh. 40.5 - Prob. 40.4QQCh. 40 - Prob. 1PCh. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6P
Ch. 40 - Prob. 7PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 13PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Two particles with masses m1 and m2 are joined by...Ch. 40 - Prob. 31APCh. 40 - Prob. 32APCh. 40 - Prob. 33APCh. 40 - Prob. 34APCh. 40 - Prob. 36APCh. 40 - Prob. 37APCh. 40 - Prob. 38APCh. 40 - Prob. 39APCh. 40 - Prob. 40APCh. 40 - Prob. 41APCh. 40 - Prob. 42APCh. 40 - Prob. 44CPCh. 40 - Prob. 46CPCh. 40 - Prob. 47CP
Knowledge Booster
Similar questions
- Check which of the wavefunctions below represents a physically possible solution to the Schrodinger equation for a free electron? 1:) ▼ (r, t) = e'(2x102z-wt) 2:) V (x, t) = e'(2x10%z-wt) 3:) V (x, t) = e'(2x1014-wt) %3D 4:) V (r, t) = e"(2×1015z–ut) 5:) V (x, t) = e'(2x100z-wt)arrow_forwardWe are going to use Heisenberg's uncertainty principle to estimate the ground- state energy of hydrogen. In our model, the electron is confined in a one- dimensional well with a length about the size of hydrogen, so that Ax = 0.0529 nm. Estimate Ap, and then assume that the ground-state energy is roughly Ap2/2me. (Give your answer in Joules or electron-volts.)arrow_forwardQ.54 A particle in one dimensional box of length 2a with potential energy [0 1지 a V = is perturbed by the potential V'= cx eV, where c is a constant. The 1st order correction to the 1st excited state of the system is хсeV.arrow_forward
- An electron has a wavefunction ψ(x)=Ce-|x|/x0 where x0 is a constant and C=1/√x0 for normalization. For this case, obtain expressions for a. ⟨x⟩ and Δx in terms of x0. b. Also calculate the probability that the electron will be found within a standard deviation of its average position, that is, in the range ⟨x⟩-∆x to ⟨x⟩+∆x, and show that this is independent of x0.arrow_forwardWhat is the value N so that ψ(x) = N/(a2 + x2) can give rise to a valid probability density?arrow_forwardConsider 1D particle in a box and it’s given normalized wave function Psi = Nsin(bx) where v(x) = 0 outside the box and v(x) = cos(pix/L) inside the box from x = 0 to x = 1. (a) show that the wave function is a valid solution to the Schrödinger equation and what value of b makes it valid? (b) derive the eigenvalue expressionarrow_forward
- Show that Ψ(x,t)=Ae^i(kx−ωt) is a valid solution to Schrӧdinger’s time-dependent equation.arrow_forwardAn electron confined in a box of width 0.360nm makes a transition from the n = 1 to n = 4 level by absorbing a photon. Calculate the wavelength of this photon.arrow_forwardFor a "particle in a box" of length, L, the wavelength for the nth level is given by An 2L %3D 2п and the wave function is n(x) = A sin (x) = A sin (x). The energy levels are пп %3D n?h? given by En : %3D 8mL2 lPn(x)|2 is the probability of finding the particle at position x in the box. Since the particle must be somewhere in the box, the integral of this function over the length of the box must be equal to 1. This is the normalization condition and ensuring that this is the case is called “normalizing" the wave function. Find the value of A the amplitude of the wave function, that normalizes it. Write the normalized wave function for the nth state of the particle in a box.arrow_forward
- Angular momentum in quantum mechanics is given by L = Lxi+Lyj+Lzk with components Lx = ypz- zpy, Ly = zpx - xpz, Lz = xpy - ypx. a) Use the known commutation rules for x, y, z, px, py and pz to show that [Ly, Lz] = ihLx. b) Consider the spherical harmonic Y1, -1([theta], [phi]) = (1/2)*sqrt(3/2pi)*sin[theta]*e-i[phi], where [theta] and [phi] are the polar and azimuthal angles, respectively. -> i) Express Y1, -1 in terms of cartesian coordinates. -> ii) Show that Y1, -1 is an eigenfunction of Lz. ci) Express the wavefunction [psi]210 for the 2pz orbital of the hydrogen atom (derived in the lectures and given in the notes) in cartesian coordinates. [Note: This involves a different spherical harmonic than in (b).] ii) Based on this expression, show that this wavefunction satisfies the three-dimensional stationary Schrodinger equation of the hydrogen atom, and determine the corresponding energy. I have attached the question better formatted, as well as the information from…arrow_forwardAn electron is moving past the square well shown in Fig. . The electron has energy E = 3U0 . What is the ratio of the de Broglie wavelength of the electron in the region x 7 L to the wavelength for 0 6 x 6 L?arrow_forwardCalculate the classical mean kinetic energy for the electrons in sodium at room temperature. From this, determine their de Broglie wavelength 2. For a classical description to be valid, we must require that λ is much smaller than the mean separation d of the particles. Show that this is not the case, given that the electron density in sodium is 2.65x1028 m³.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning