Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 21P
(a)
To determine
The transmission coefficient.
(b)
To determine
The width of the barrier to increase the transmission coefficient by one in one million.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
An electron having total energy E = 4.50 eV approaches a rectangular energy barrier with U = 5.00 eV and L = 950 pm as shown in Figure P40.21. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero.(b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.50-eV electron tunneling through the barrierto be one in one million?
The table gives relative values for three situations for the barrier tunneling experiment of the
figures.
Electron Energy Barrier Height Barrier Thickness
(a)
5E
L
(b)
17E
L/2
(c)
2E
2L
Energy
V-0
V<0
V-0
Electron
* 0 x l.
Rank the situations according to the probability of the electron tunneling through the barrier. If
multiple situations rank equally, use the same rank for each, then exclude the intermediate ranking
(i.e. if objects A, B, and C must be ranked, and A and B must both be ranked first, the rạnking would
be A:Greatest, B:Greatest, C:Third greatest). If all situations rank equally, rank each as 'Greatest'.
(a)
(b)
(c)
= =
An electron having total energy E 4.60 eV approaches a rectangular energy barrier with U■5.10 eV and L-950 pm as shown in the figure below. Classically, the electron cannot pass through the barrier
because E < U. Quantum-mechanically, however, the probability of tunneling is not zero.
Energy
E
U
0
i
(a) Calculate this probability, which is the transmission coefficient. (Use 9.11 x 10-31 kg for the mass of an electron, 1.055 x 10-34] s for h, and note that there are 1.60 x 10-19
J per eV.)
(b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.60-eV electron tunneling through the barrier to be one in one million?
nm
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 40.1 - Prob. 40.1QQCh. 40.2 - Prob. 40.2QQCh. 40.2 - Prob. 40.3QQCh. 40.5 - Prob. 40.4QQCh. 40 - Prob. 1PCh. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6P
Ch. 40 - Prob. 7PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 13PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Two particles with masses m1 and m2 are joined by...Ch. 40 - Prob. 31APCh. 40 - Prob. 32APCh. 40 - Prob. 33APCh. 40 - Prob. 34APCh. 40 - Prob. 36APCh. 40 - Prob. 37APCh. 40 - Prob. 38APCh. 40 - Prob. 39APCh. 40 - Prob. 40APCh. 40 - Prob. 41APCh. 40 - Prob. 42APCh. 40 - Prob. 44CPCh. 40 - Prob. 46CPCh. 40 - Prob. 47CP
Knowledge Booster
Similar questions
- We can approximate an electron moving in a nanowire (a small, thin wire) as a one-dimensional infi nite square-well potential. Let the wire be 2.0 μm long. The nanowire is cooled to a temperature of 13 K, and we assume the electron’s average kinetic energy is that of gas molecules at this temperature ( 3kT/2). (a) What are the three lowest possible energy levels of the electrons? (b) What is the approximate quantum number of electrons moving in the wire?arrow_forwardIn a simple model for a radioactive nucleus, an alpha particle (m = 6.64 * 10-27 kg) is trapped by a square barrier that has width 2.0 fm and height 30.0 MeV. (a) What is the tunneling probability when the alpha particle encounters the barrier if its kinetic energy is 1.0 MeV below the top of the barrier (Fig. )? (b) What is the tunneling probability if the energy of the alpha particle is 10.0 MeV below the top of the barrier?arrow_forwardAn electron has total energy 6.29 eV. The particle initially travels in a region with constant potential energy 0.61 eV, before encountering a step to a new constant potential energy of 4.03 eV. What is the probability (in %) that the electron will be transmitted over the potential step?arrow_forward
- A proton and a deuteron (which has the same charge as the proton but 2.0 times the mass) are incident on a barrier of thickness 11.8 fm and “height” 10.9 MeV. Each particle has a kinetic energy of 2.50 MeV. What is the ratio of the tunneling probability of the proton to the tunneling probability of the deuteron?arrow_forwardThe energy of a proton is 1.0 MeV below the top of a 6.8-fm-wide energy barrier. What is the probability that the proton will tunnel through the barrier? (1 eV = 1.60 × 10-19 J, mproton = 1.67 × 10-27 kg, ħ = 1.055 × 10-34 J ∙ s, h = 6.626 × 10-34 J ∙ s)arrow_forwardAn electron in a one-dimensional infinite potential well of length L has ground-state energy E1.The length is changed to L' so that the new ground-state energy is E'1 = 0.500E1 .What is the ratio L'/L?arrow_forwardA quantum mechanical particle moving in one dimension between impenetrable barriers has energy levels ϵ,4ϵ,9ϵ,...ϵ, 4ϵ, 9ϵ, ... , that is En=ϵn2En=ϵ n2 . Suppose that ϵ=0.035eVϵ =0.035 eV for a certain such quantum system. What is the probability (as a percent) that such a system will be in its ground state when it is in contact with a reservoir at room temperature? The probability that the system will be in its ground state when it is in contact with a reservoir at room temperature isarrow_forwardAn electron with kinetic energy 2.0 MeV encounters a potential energy barrier of height 16.0 MeV and width 2.00 nm. What is the probability that the electron emerges on the other side of the barrier?arrow_forwardA particle of mass m is confined to a box of width L. If the particle is in the first excited state, what are the probabilities of finding the particle in a region of width0.020 L around the given point x: (a) x=0.25L; (b) x=040L; (c) 0.75L and (d) x=0.90L.arrow_forwardIf STM is to detect surface features with local heights of about 0.0200 nm, what percent change in tunneling-electron current must the STM electronics be able to detect? Assume that the tunneling-electron current has characteristics given in the preceding problem.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning