Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 40, Problem 18P

(a)

To determine

The wave function and probability density for n=1, n=2 and n=3.

(b)

To determine

The sketch of the wave functions and probability densities.

Blurred answer
Students have asked these similar questions
A single electron of mass m can move freely along a one-dimensionl gold nanowire. Let x be the position coordinate of the electron along the wire. (a) Let ø (x) be the wave function of the electron. The quantity |ø (x)| has dimensions of inverse length. Explain very briefly the meaning of this quantity as a probability density. (b) Let us assume that $ (x) = A sin (3kox) (2) where A and ko are fixed, positive constants. Establish whether this wave function represents an eigenstate of momentum p. Justify your answer. Hint: the momentum operator is p -ih. - (c) Establish whether the wave function (x) given in Eq. (2) represents an eigenstate of kinetic energy K. Justify your answer. Hint: the kinetic energy operator is K = p²/2m. (d) Let us now assume that the gold nanowire mentioned above is not infinite, but extends over a finite length from r= 0 to x = L. Inside this region, the potential energy of the electron is zero, but outside this region the potential energy is infinite…
Consider a particle trapped in a 1D box with zero potential energy with walls at x = o and x = L. The general wavefunction solutions for this problem with quantum number, n, are: V,6) = sin ) 4n(x) = The corresponding energy (level) for each wavefunction solution is: n²h? En 8mL? a) What is the probability of finding the particle between x = L/4 and x = 3L/4 when the particle is in quantum state n = 1, 2 and 3. You can use calculator or a numerical program to do the integral. For people who want to try doing the integral by hand, the following identity will be helpful: sin²(x) = (1 – cos (2x))/2.
radial function of the figure   a) r value at which the probability density is maximum. b) Find <r>, <r2> and <1 / r>.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning