
Concept explainers
(a)
The time of the jump and acceleration during the time.

Answer to Problem 91QAP
The time of the jump is
Explanation of Solution
Givendata:
Distance, for take-off speed
Distance for acceleration necessary to attain the required speed from rest
Final speed
Initial speed
Formula Used:
Newton's second law:
Calculation:
We are interested in the portionof the jump while the insect is still on the ground.
We can assume that the acceleration of theinsect is constant during this phase
In order to calculate the acceleration of the insect and thelength of time during this phase of the jump, we first need to calculate the speed with whichthe froghopper leaves the ground.
While the insect is in the air, it is only under the influenceof gravity, so we can use the constant acceleration equations and the height of the jump tocalculate the takeoff speed.
Once we have this value, we know the froghopper acceleratedfrom rest through a distance of
The forces acting on the insectwhile it is on the ground are the force of the ground on the froghopper pointing up (that is,the normal force) and the force of gravity pointing down.
After defining a coordinate systemwhere positive y points upward, we can calculate the magnitude of the normal force usingNewton's second law.
Takeoff speed is,
Acceleration necessary to attain that speed from rest is,
Time is,
Conclusion:
The time of the froghopper jump is
(b)
The free body diagram of the grasshopper during the leap.

Explanation of Solution
Free body diagram of the grasshopper during the leap is,
Where,
(c)
The force that ground exert on the froghopper during the jump in millinewtons and represent it as a multiple of insect's weight.

Answer to Problem 91QAP
The force that ground exert on the froghopper during the jump in millinewtons is
And the force
Explanation of Solution
Given data:
Distance, for take-off speed
Distance for acceleration necessary to attain the required speed from rest
Final speed
Initial speed
Formula Used:
Newton's second law:
Calculation:
We are interested in the portionof the jump while the insect is still on the ground.
We can assume that the acceleration of the insect is constant during this phase
In order to calculate the acceleration of the insect and the length of time during this phase of the jump. We first need to calculate the speed with which the froghopper leaves the ground.
While the insect is in the air, it is only under the influence of gravity, so we can use the constant acceleration equations and the height of the jump to calculate the takeoff speed.
Once we have this value, we know the froghopper accelerated from rest through a distance of
We can directly calculate the time because we are assuming the acceleration is constant.
The forces acting on the insect while it is on the ground are the force of the ground on the froghopper pointing up (that is, the normal force) and the force of gravity pointing down.
After defining a coordinate system where positive y points upward, we can calculate the magnitude of the normal force using Newton's second law.
froghopper's weight
This force is
Conclusion:
Thus, we have the value of force
And the force is
Want to see more full solutions like this?
Chapter 4 Solutions
COLLEGE PHYSICS
- A 23.0-mw (mill:-Watts) laser puts out a narrow cyclindrical beam 50 mm in diameter. What is the average N/C. rms E-field?arrow_forwardThe average intensity of light emerging from a polarizing sheet is. 0.550 W/m², and the average intensity of the horizontally polarized light incident on the sheet is 0.940 W/m². Determine the angle that the transmission axis of the polarizing sheet makes with the horizontalarrow_forwardwe measure an At a particular moment in time and space, electromagnetic wave's electric and magnetic fields. We find the electric field & pointing North and the magnetic field B pointing Down. What is the direction of wave propagation? a. South b. West C. c. Up d. Down e. East f. North.arrow_forward
- Hello, please help with how to calculate impact velocity and rebound velocity. Thanks!arrow_forwardA object of mass 3.00 kg is subject to a force FX that varies with position as in the figure below. Fx (N) 4 3 2 1 x(m) 2 4 6 8 10 12 14 16 18 20 i (a) Find the work done by the force on the object as it moves from x = 0 to x = 5.00 m. J (b) Find the work done by the force on the object as it moves from x = 5.00 m to x = 11.0 m. ] (c) Find the work done by the force on the object as it moves from x = 11.0 m to x = 18.0 m. J (d) If the object has a speed of 0.400 m/s at x = 0, find its speed at x = 5.00 m and its speed at x speed at x = 5.00 m speed at x = 18.0 m m/s m/s = 18.0 m.arrow_forwardAn EL NIÑO usually results in Question 8Select one: a. less rainfall for Australia. b. warmer water in the western Pacific. c. all of the above. d. none of the above. e. more rainfall for South America.arrow_forward
- A child's pogo stick (figure below) stores energy in a spring (k = 2.05 × 104 N/m). At position (✗₁ = -0.100 m), the spring compression is a maximum and the child is momentarily at rest. At position ® (x = 0), the spring is relaxed and the child is moving upward. At position child is again momentarily at rest at the top of the jump. Assume that the combined mass of child and pogo stick is 20.0 kg. B A (a) Calculate the total energy of the system if both potential energies are zero at x = 0. (b) Determine X2- m (c) Calculate the speed of the child at x = 0. m/s (d) Determine the value of x for which the kinetic energy of the system is a maximum. mm (e) Obtain the child's maximum upward speed. m/s thearrow_forwardAn EL NIÑO usually results in Question 8Select one: a. less rainfall for Australia. b. warmer water in the western Pacific. c. all of the above. d. none of the above. e. more rainfall for South America.arrow_forwardEarth’s mantle is Question 12Select one: a. Solid b. Liquid c. Metallic d. very dense gasarrow_forward
- Silicates Question 18Select one: a. All of these b. Are minerals c. Consist of tetrahedra d. Contain silicon and oxygenarrow_forwardWhich of the following is not one of the major types of metamorphism? Question 20Select one: a. Fold b. Contact c. Regional d. Sheararrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? m (b) What maximum acceleration will he experience? m/s²arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





