COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 93QAP
To determine

(a)

The tension in the rope.

Expert Solution
Check Mark

Answer to Problem 93QAP

The tension in the rope is 644N

Explanation of Solution

Givendata:

Distance, Δy=2.00m

Time, t=10.0s

Mass of Sue, mSue=66.0kg

Formula Used:

Newton's second law:

  Fnet=m×a

  v=ut+12at2

Calculation:

  COLLEGE PHYSICS, Chapter 4, Problem 93QAP , additional homework tip  1

We'll use two different but related coordinate systems for the two people.

For Sue, positive y will point upward.

For Paul, the axes will be parallel and perpendicular to the inclined plane, where up the ramp and out of the ramp are positive.

Tension from the rope pulling up and gravity pulling down are the only forces acting on

Sue.

Assuming her acceleration is constant, we can use the constant acceleration equations

and Newton's second law to calculate the magnitude of the tension.

Sue's acceleration:

  y=y0+v0yt+12ayt2=y0+0+12ayt2=>ay=2(Δy)t2=2(2.00m) (10.0s)2=0.0400m/s2

Free-body diagram of Sue:

  COLLEGE PHYSICS, Chapter 4, Problem 93QAP , additional homework tip  2

Newton's second law for Sue:

  Fext,y=TwSue=TmSueg=mSueayT=mSue(g+ay)=(66.0kg)(( 9.80 m/s2 )+( 0.0400 m/s2 ))=644N

Conclusion:

Thus, from theNewton's second law for Sue we have the tension in the rope joining them as 644N

To determine

(b)

Mass of Paul

Expert Solution
Check Mark

Answer to Problem 93QAP

Mass of Paul is 92.4kg

Explanation of Solution

Given data:

Distance, Δy=2.00m

Time, t=10.0s

Mass of Sue, mSue=66.0kg

Formula Used:

Newton's second law:

  Fnet=m×a

  v=ut+12at2

Calculation:

  COLLEGE PHYSICS, Chapter 4, Problem 93QAP , additional homework tip  3

We'll use two different but relatedcoordinate systems for the two people.

For Sue,positive y will point upward.

For Paul, the axes willbe parallel and perpendicular to the inclined plane,where up the ramp and out of the ramp are positive.

Tension from the rope pulling up and gravity pulling down are the only forces acting on

Sue.

Assuming her acceleration is constant, we can use the constant acceleration equations

and Newton's second law to calculate the magnitude of the tension.

Since Paul and Sue aretethered to one another, the magnitudes of their accelerations are equal.

The tension in therope and gravity are the only forces acting on Paul that have components that are parallel tothe face of the glacier. We can then solve the parallel component of Newton's second law forPaul's mass.

Sue's acceleration:

  y=y0+v0yt+12ayt2=y0+0+12ayt2=>ay=2(Δy)t2=2(2.00m) (10.0s)2=0.0400m/s2

Free-body diagram of Sue:

  COLLEGE PHYSICS, Chapter 4, Problem 93QAP , additional homework tip  4

Newton's second law for Sue:

  Fext,y=TwSue=TmSueg=mSueayT=mSue(g+ay)=(66.0kg)(( 9.80 m/s2 )+( 0.0400 m/s2 ))=644N

Free-body diagram of Paul:

  COLLEGE PHYSICS, Chapter 4, Problem 93QAP , additional homework tip  5

Newton's second law for Paul:

  Fext,parallel=TwPaul=TmPaulgsin(45.0)=mPaulaparallel=>mPaul=Ta parallel+gsin( 45.0)=644N( 0.0400 m/s2 )+( 9.80 m/s2 )sin( 45.0)=92.4kg

Conclusion:

Thus, by Newton's second law for Paul mass of Paul is 92.4kg

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You're on an interplanetary mission, in an orbit around the Sun.  Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged.  Then you must have   Question 2 options:   sped up at perihelion   sped up at aphelion   slowed down at perihelion   slowed down at aphelion
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!

Chapter 4 Solutions

COLLEGE PHYSICS

Ch. 4 - Prob. 11QAPCh. 4 - Prob. 12QAPCh. 4 - Prob. 13QAPCh. 4 - Prob. 14QAPCh. 4 - Prob. 15QAPCh. 4 - Prob. 16QAPCh. 4 - Prob. 17QAPCh. 4 - Prob. 18QAPCh. 4 - Prob. 19QAPCh. 4 - Prob. 20QAPCh. 4 - Prob. 21QAPCh. 4 - Prob. 22QAPCh. 4 - Prob. 23QAPCh. 4 - Prob. 24QAPCh. 4 - Prob. 25QAPCh. 4 - Prob. 26QAPCh. 4 - Prob. 27QAPCh. 4 - Prob. 28QAPCh. 4 - Prob. 29QAPCh. 4 - Prob. 30QAPCh. 4 - Prob. 31QAPCh. 4 - Prob. 32QAPCh. 4 - Prob. 33QAPCh. 4 - Prob. 34QAPCh. 4 - Prob. 35QAPCh. 4 - Prob. 36QAPCh. 4 - Prob. 37QAPCh. 4 - Prob. 38QAPCh. 4 - Prob. 39QAPCh. 4 - Prob. 40QAPCh. 4 - Prob. 41QAPCh. 4 - Prob. 42QAPCh. 4 - Prob. 43QAPCh. 4 - Prob. 44QAPCh. 4 - Prob. 45QAPCh. 4 - Prob. 46QAPCh. 4 - Prob. 47QAPCh. 4 - Prob. 48QAPCh. 4 - Prob. 49QAPCh. 4 - Prob. 50QAPCh. 4 - Prob. 51QAPCh. 4 - Prob. 52QAPCh. 4 - Prob. 53QAPCh. 4 - Prob. 54QAPCh. 4 - Prob. 55QAPCh. 4 - Prob. 56QAPCh. 4 - Prob. 57QAPCh. 4 - Prob. 58QAPCh. 4 - Prob. 59QAPCh. 4 - Prob. 60QAPCh. 4 - Prob. 61QAPCh. 4 - Prob. 62QAPCh. 4 - Prob. 63QAPCh. 4 - Prob. 64QAPCh. 4 - Prob. 65QAPCh. 4 - Prob. 66QAPCh. 4 - Prob. 67QAPCh. 4 - Prob. 68QAPCh. 4 - Prob. 69QAPCh. 4 - Prob. 70QAPCh. 4 - Prob. 71QAPCh. 4 - Prob. 72QAPCh. 4 - Prob. 73QAPCh. 4 - Prob. 74QAPCh. 4 - Prob. 75QAPCh. 4 - Prob. 76QAPCh. 4 - Prob. 77QAPCh. 4 - Prob. 78QAPCh. 4 - Prob. 79QAPCh. 4 - Prob. 80QAPCh. 4 - Prob. 81QAPCh. 4 - Prob. 82QAPCh. 4 - Prob. 83QAPCh. 4 - Prob. 84QAPCh. 4 - Prob. 85QAPCh. 4 - Prob. 86QAPCh. 4 - Prob. 87QAPCh. 4 - Prob. 88QAPCh. 4 - Prob. 89QAPCh. 4 - Prob. 90QAPCh. 4 - Prob. 91QAPCh. 4 - Prob. 92QAPCh. 4 - Prob. 93QAPCh. 4 - Prob. 94QAPCh. 4 - Prob. 95QAPCh. 4 - Prob. 96QAPCh. 4 - Prob. 97QAPCh. 4 - Prob. 98QAPCh. 4 - Prob. 99QAPCh. 4 - Prob. 100QAPCh. 4 - Prob. 101QAPCh. 4 - Prob. 102QAPCh. 4 - Prob. 103QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY