COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 87QAP
To determine

(a)

The reading on the scale in an elevator when elevator accelerates at 3.50m/s2 downward

Expert Solution
Check Mark

Answer to Problem 87QAP

The reading on the scale is =189N

Explanation of Solution

Givendata:

  mdog=30.0kgay=3.50m/s2

Formula Used:

Newton's second law:

  Fnet=m×a

Calculation:

We are interested in calculating the reading on the scale for accelerationof the elevator, at 3.50m/s2 downwardwhich is equal to the acceleration of the scale and dog since they travel

together as one object.

The reading on the scale is equal in magnitude to the normalforce acting on the dog. Gravity also acts on the dog.

We can use Newton's second law tocalculate N as a function of the acceleration.

We'll define up to be positive y throughout ourcalculation.

Free-body diagram of the dog:

  COLLEGE PHYSICS, Chapter 4, Problem 87QAP , additional homework tip  1

  Fext,y=nwdog=mdogay=>n=wdog+mdogay=mdogg+mdogay=mdog(g+ay)

  =>n=mdog(g+ay)=(30.0kg)((9.80 m/s2)(3.50 m/s2))=189N

Conclusion:

Thus, we have the reading on the scale in an elevator when elevator accelerates at 3.50m/s2 downward is =189N.

To determine

(b)

The reading on the scale in an elevator when elevator cruises down at a steady speed.

Expert Solution
Check Mark

Answer to Problem 87QAP

The reading on the scale is =294N

Explanation of Solution

Given data:

  mdog=30.0kg

  ay=0m/s2

Formula Used:

Newton's second law:

  Fnet=m×a

Calculation:

We are interested in calculating the reading on the scale for elevator cruises down at a steady speed., which is equal to the acceleration of the scale and dog since they traveltogether as one object.

The reading on the scale is equal in magnitude to the normal force acting on the dog. Gravity also acts on the dog.

We can use Newton's second law to calculate N as a function of the acceleration.

We'll define up to be positive y throughout our calculation.

Free-body diagram of the dog:

  COLLEGE PHYSICS, Chapter 4, Problem 87QAP , additional homework tip  2

  ay=0m/s2 because of steady speed.

  Fext,y=nwdog=mdogay=>n=wdog+mdogay=mdogg+mdogay=mdog(g+ay)

  =>n=mdog(g+ay)=(30.0kg)((9.80 m/s2)+(0))=294N

Conclusion:

Thus, we have the reading on the scale in an elevator =294N, when elevator cruises down at a steady speed.

To determine

(c)

The reading on the scale in an elevator when elevator accelerates at 4.00m/s2 upward

Expert Solution
Check Mark

Answer to Problem 87QAP

The reading on the scale is =414N

Explanation of Solution

Given data:

  mdog=30.0kg

  ay=4.00m/s2

Formula Used:

Newton's second law:

  Fnet=m×a

Calculation:

We are interested in calculating the reading on the scale for acceleration as 4.00m/s2 upward

of the elevator, which are equal to the accelerations of the scale and dog since they travel

together as one object.

The reading on the scale is equal in magnitude to the normal force acting on the dog. Gravity also acts on the dog.

We can use Newton's second law to calculate N as a function of the acceleration.

We'll define up to be positive y throughout our calculation.

Free-body diagram of the dog:

  COLLEGE PHYSICS, Chapter 4, Problem 87QAP , additional homework tip  3

  Fext,y=nwdog=mdogay=>n=wdog+mdogay=mdogg+mdogay=mdog(g+ay)

  =>n=mdog(g+ay)=(30.0kg)((9.80 m/s2)+(4.00 m/s2))=414N

Conclusion:

The reading on the scale in an elevator when elevator accelerates at 4.00m/s2 upward is =414N

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
a 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?
a 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?
Block A, with a mass of 10 kg, rests on a 30° incline. The coefficient of kinetic friction is 0.20. The attached string is parallel to the incline and passes over a massless, frictionless pulley at the top. Block B, with a mass of 15.0 kg. is attached to the dangling end of the string. What is the acceleration of Block B in m/s?  show all steps please

Chapter 4 Solutions

COLLEGE PHYSICS

Ch. 4 - Prob. 11QAPCh. 4 - Prob. 12QAPCh. 4 - Prob. 13QAPCh. 4 - Prob. 14QAPCh. 4 - Prob. 15QAPCh. 4 - Prob. 16QAPCh. 4 - Prob. 17QAPCh. 4 - Prob. 18QAPCh. 4 - Prob. 19QAPCh. 4 - Prob. 20QAPCh. 4 - Prob. 21QAPCh. 4 - Prob. 22QAPCh. 4 - Prob. 23QAPCh. 4 - Prob. 24QAPCh. 4 - Prob. 25QAPCh. 4 - Prob. 26QAPCh. 4 - Prob. 27QAPCh. 4 - Prob. 28QAPCh. 4 - Prob. 29QAPCh. 4 - Prob. 30QAPCh. 4 - Prob. 31QAPCh. 4 - Prob. 32QAPCh. 4 - Prob. 33QAPCh. 4 - Prob. 34QAPCh. 4 - Prob. 35QAPCh. 4 - Prob. 36QAPCh. 4 - Prob. 37QAPCh. 4 - Prob. 38QAPCh. 4 - Prob. 39QAPCh. 4 - Prob. 40QAPCh. 4 - Prob. 41QAPCh. 4 - Prob. 42QAPCh. 4 - Prob. 43QAPCh. 4 - Prob. 44QAPCh. 4 - Prob. 45QAPCh. 4 - Prob. 46QAPCh. 4 - Prob. 47QAPCh. 4 - Prob. 48QAPCh. 4 - Prob. 49QAPCh. 4 - Prob. 50QAPCh. 4 - Prob. 51QAPCh. 4 - Prob. 52QAPCh. 4 - Prob. 53QAPCh. 4 - Prob. 54QAPCh. 4 - Prob. 55QAPCh. 4 - Prob. 56QAPCh. 4 - Prob. 57QAPCh. 4 - Prob. 58QAPCh. 4 - Prob. 59QAPCh. 4 - Prob. 60QAPCh. 4 - Prob. 61QAPCh. 4 - Prob. 62QAPCh. 4 - Prob. 63QAPCh. 4 - Prob. 64QAPCh. 4 - Prob. 65QAPCh. 4 - Prob. 66QAPCh. 4 - Prob. 67QAPCh. 4 - Prob. 68QAPCh. 4 - Prob. 69QAPCh. 4 - Prob. 70QAPCh. 4 - Prob. 71QAPCh. 4 - Prob. 72QAPCh. 4 - Prob. 73QAPCh. 4 - Prob. 74QAPCh. 4 - Prob. 75QAPCh. 4 - Prob. 76QAPCh. 4 - Prob. 77QAPCh. 4 - Prob. 78QAPCh. 4 - Prob. 79QAPCh. 4 - Prob. 80QAPCh. 4 - Prob. 81QAPCh. 4 - Prob. 82QAPCh. 4 - Prob. 83QAPCh. 4 - Prob. 84QAPCh. 4 - Prob. 85QAPCh. 4 - Prob. 86QAPCh. 4 - Prob. 87QAPCh. 4 - Prob. 88QAPCh. 4 - Prob. 89QAPCh. 4 - Prob. 90QAPCh. 4 - Prob. 91QAPCh. 4 - Prob. 92QAPCh. 4 - Prob. 93QAPCh. 4 - Prob. 94QAPCh. 4 - Prob. 95QAPCh. 4 - Prob. 96QAPCh. 4 - Prob. 97QAPCh. 4 - Prob. 98QAPCh. 4 - Prob. 99QAPCh. 4 - Prob. 100QAPCh. 4 - Prob. 101QAPCh. 4 - Prob. 102QAPCh. 4 - Prob. 103QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY