Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 8Q

(a) Why do you push down harder on the pedals of a bicycle when first starting out than when moving at constant speed? (b) Why do you need to pedal at all when cycling at constant speed?

Expert Solution & Answer
Check Mark
To determine

Why do you push harder on the pedals of a bicycle when starting to move at a constant velocity? Why do you need to keep pedaling when cycling at a constant speed?

Answer to Problem 8Q

Solution:

a)Because the force of static friction is greater than the force of kinetic friction. You need a force to overcome the static friction.

b)To overcome the losses of aerodynamic drag, frictional and mechanical losses the pedaling necessary to move in a constant speed

Explanation of Solution

a)Because the force of static friction is greater than the force of kinetic friction. You need a force to overcome the static friction.

In order to accelerate from rest, the applied force must be greater than zero. When cycle is moving at a constant speed, net force equals zero. When starting to move, it is necessary to push the pedal to overcome static friction which is larger than kinetic friction.

b)Because your bicycle is not an ideal system, and there will be forces which slow you down directly like aerodynamic drag and indirectly as friction and mechanical losses in the pedal mechanism. You will deaccelerate if you do not provide sufficient force to overcome these forces. If you provide force enough to counter these, you maintain a constant speed.

Chapter 4 Solutions

Physics: Principles with Applications

Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - A block is given a brief push so that it slides up...Ch. 4 - Prob. 20QCh. 4 - Prob. 21QCh. 4 - What force is needed to accelerate a sled (mass =...Ch. 4 - Prob. 2PCh. 4 - How much tension must a rope withstand if it is...Ch. 4 - According to a simplified model of a mammalian...Ch. 4 - Superman must stop a 120-km/h train in 150 m to...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - What average force is required to stop a 950-kg...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - A box weighing 77.0 N rests on a table. A rope...Ch. 4 - Figure 4-46 Problem 21. 21. (I) Draw the free-body...Ch. 4 - Prob. 21PCh. 4 - Arlene is to walk across a “high wire" strung...Ch. 4 - A window washer pulls herself upward using the...Ch. 4 - One 3.2-kg paint bucket is hanging by a massless...Ch. 4 - Prob. 25PCh. 4 - A train locomotive is pulling two cars of the same...Ch. 4 - Prob. 27PCh. 4 - A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - Prob. 29PCh. 4 - Figure 4-53 [shows a block (mass mA) on a smooth...Ch. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - 35. (Ill) Suppose the pulley in Fig. 4-55 is...Ch. 4 - Prob. 34PCh. 4 - A force of 35.0 N is required to start a 6.0-kg...Ch. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - A box is given a push so that it slides across the...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - 46. (II) For the system of Fig. 4-32 (Example...Ch. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - A person pushes a 14.0-kg lawn mower at constant...Ch. 4 - Prob. 49PCh. 4 - (a) A box sits at rest on a rough 33° inclined...Ch. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - A 25.0-kg box is released on a 27° incline and...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - The crate shown in Fig. 4-60 lies on a plane...Ch. 4 - A crate is given an initial speed of 3.0 m/s up...Ch. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - The coefficient of kinetic friction for a 22-kg...Ch. 4 - On an icy day, you worry about parking your car in...Ch. 4 - Two masses mA= 2.0 kg and mB= 5.0 kg are on...Ch. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66GPCh. 4 - Prob. 67GPCh. 4 - Prob. 68GPCh. 4 - Prob. 69GPCh. 4 - Prob. 70GPCh. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - Prob. 76GPCh. 4 - Prob. 77GPCh. 4 - Prob. 78GPCh. 4 - Prob. 79GPCh. 4 - Prob. 80GPCh. 4 - Prob. 81GPCh. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - Prob. 84GPCh. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 89GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY