
Concept explainers
(a)
Interpretation:
The following equation should be balanced by the half reaction method.
Concept Introduction:
The
A
Half reaction method:
Balance all atoms including oxygen and hydrogen atoms are carried out by addition of water molecule (to balance oxygen) and hydrogen ion (to balance hydrogen) in the half reactions. Number of electrons and charge should be balanced after that makes the number of electrons equal in both oxidation and reduction reactions by multiplying with an integer. The last step is to add both half reactions.
(a)

Answer to Problem 83E
The balanced equation is:
Explanation of Solution
The given reaction is:
First step is to assign oxidation numbers to each element present in the given reaction.
The above reaction can be balanced by the inspection method.
Since, in the given reaction one molecule of
The reaction is written as:
Now, to balance the above reaction, 4 (coefficient) should be placed before
The balanced reaction is written as:
(b)
Interpretation:
The following equation should be balanced by the half reaction method.
Concept Introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
A reduction or an oxidation reaction is known as half reaction.
Half reaction method:
Balance all atoms including oxygen and hydrogen atoms are carried out by addition of water molecule (to balance oxygen) and hydrogen ion (to balance hydrogen) in the half reactions. Number of electrons and charge should be balanced after that makes the number of electrons equal in both oxidation and reduction reactions by multiplying with an integer. The last step is to add both half reactions.
(b)

Answer to Problem 83E
The balanced equation is:
Explanation of Solution
The given reaction is:
First step is to assign oxidation numbers to each element present in the given reaction.
Now, separate the above reaction into oxidation and reduction reactions (two half-reactions).
Oxidation:
Reduction:
Balance the above two reactions except oxygen atoms and hydrogen atoms.
The reaction is written as:
Oxidation:
Reduction:
Balance the oxygen atoms in the above two reactions.
Oxidation:
Reduction:
Balance the hydrogen atoms in the above two reactions.
Oxidation:
Reduction:
Balance the charge and number of electrons in the above two reactions.
Oxidation:
Reduction:
Now, balance the number of gain electrons and number of lost electrons in the above two reactions.
Oxidation:
Reduction:
Multiply equation 2 by 8.
Oxidation:
Reduction:
Add both equations,
The balanced equation is:
(c)
Interpretation:
The following equation should be balanced by the half reaction method.
Concept Introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
A reduction or an oxidation reaction is known as half reaction.
Half reaction method:
Balance all atoms including oxygen and hydrogen atoms are carried out by addition of water molecule (to balance oxygen) and hydrogen ion (to balance hydrogen) in the half reactions. Number of electrons and charge should be balanced after that makes the number of electrons equal in both oxidation and reduction reactions by multiplying with an integer. The last step is to add both half reactions.
(c)

Answer to Problem 83E
The balanced equation is:
Explanation of Solution
The given reaction is:
First step is to assign oxidation numbers to each element present in the given reaction.
Now, separate the above reaction into oxidation and reduction reactions (half-reactions).
Oxidation:
(Cr)
(N)
(S)
(C)
Reduction:
Combine all oxidation reactions:
Oxidation:
Reduction:
Balance the above two reactions except oxygen atoms and hydrogen atoms.
The reaction is written as:
Oxidation:
Reduction:
Balance the oxygen atoms in the above two reactions.
Oxidation:
Reduction:
Balance the hydrogen atoms in the above two reactions.
Oxidation:
Reduction:
Balance the charge and number of electrons in the above two reactions.
Oxidation:
Reduction:
Now, multiply equation 2 by 97.
Oxidation:
Reduction:
Add both equations,
The balanced equation is:
(d)
Interpretation:
The following equation should be balanced by the half reaction method.
Concept Introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
A reduction or an oxidation reaction is known as half reaction.
Half reaction method:
Balance all atoms including oxygen and hydrogen atoms are carried out by addition of water molecule (to balance oxygen) and hydrogen ion (to balance hydrogen) in the half reactions. Number of electrons and charge should be balanced after that makes the number of electrons equal in both oxidation and reduction reactions by multiplying with an integer. The last step is to add both half reactions.
(d)

Answer to Problem 83E
The balanced equation is:
Explanation of Solution
The given reaction is:
First step is to assign oxidation numbers to each element present in the given reaction.
Now, separate the above reaction into oxidation and reduction reactions (half-reactions).
Oxidation:
(Cr)
(I)
Reduction:
Combine all oxidation reactions:
Oxidation:
Reduction:
Balance the above two reactions except oxygen atoms and hydrogen atoms.
The reaction is written as:
Oxidation:
Reduction:
Balance the oxygen atoms in the above two reactions.
Oxidation:
Reduction:
Balance the hydrogen atoms in the above two reactions.
Oxidation:
Reduction:
Balance the charge and number of electrons in the above two reactions.
Oxidation:
Reduction:
Now, multiply equation 1 by 2 and equation 2 by 27.
Oxidation:
Reduction:
Add both equations,
The equation is written as:
For basic medium: Now, add hydroxide ion on both sides of the reaction to balance the hydrogen ion.
The equation is written as:
The balance reaction is:
(e)
Interpretation:
The following equation should be balanced by the half reaction method.
Concept Introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
A reduction or an oxidation reaction is known as half reaction.
Half reaction method:
Balance all atoms including oxygen and hydrogen atoms are carried out by addition of water molecule (to balance oxygen) and hydrogen ion (to balance hydrogen) in the half reactions. Number of electrons and charge should be balanced after that makes the number of electrons equal in both oxidation and reduction reactions by multiplying with an integer. The last step is to add both half reactions.
(e)

Answer to Problem 83E
The balanced equation is:
Explanation of Solution
The given reaction is:
First step is to assign oxidation numbers to each element present in the given reaction.
Now, separate the above reaction into oxidation and reduction reactions (half-reactions).
Oxidation:
(Fe)
(C)
(N)
Reduction:
Combine all oxidation reactions:
Oxidation:
Reduction:
Balance the above two reactions except oxygen atoms and hydrogen atoms.
The reaction is written as:
Oxidation:
Reduction:
Balance the oxygen atoms in the above two reactions.
Oxidation:
Reduction:
Balance the hydrogen atoms in the above two reactions.
Oxidation:
Reduction:
Balance the charge and number of electrons in the above two reactions.
Oxidation:
Reduction:
Now, multiply equation 2 by 61.
Oxidation:
Reduction:
Add both equations,
The equation is written as:
For basic medium: Now, add hydroxide ion on both sides of the reaction to balance the hydrogen ion.
The equation is written as:
The balance reaction is:
Want to see more full solutions like this?
Chapter 4 Solutions
EBK CHEMICAL PRINCIPLES
- A J то گای ه +0 Also calculate the amount of starting materials chlorobenzaldehyde and p-chloroacetophenone required to prepare 400 mg of the given chalcone product 1, 3-bis(4-chlorophenyl)prop-2-en-1-one molar mass ok 1,3-bis(4-Chlorophenyl) prop-2-en-1-one = 277.1591m01 number of moles= 0.400/277.15 = 0.00144 moles 2 x 0.00 144=0.00288 moves arams of acetophenone = 0.00144 X 120.16 = 0.1739 0.1739x2=0.3469 grams of benzaldehyde = 0.00144X106.12=0.1539 0.1539x2 = 0.3069 Starting materials: 0.3469 Ox acetophenone, 0.3069 of benzaldehyde 3arrow_forward1. Answer the questions about the following reaction: (a) Draw in the arrows that can be used make this reaction occur and draw in the product of substitution in this reaction. Be sure to include any relevant stereochemistry in the product structure. + SK F Br + (b) In which solvent would this reaction proceed the fastest (Circle one) Methanol Acetone (c) Imagine that you are working for a chemical company and it was your job to perform a similar reaction to the one above, with the exception of the S atom in this reaction being replaced by an O atom. During the reaction, you observe the formation of three separate molecules instead of the single molecule obtained above. What is the likeliest other products that are formed? Draw them in the box provided.arrow_forward3. For the reactions below, draw the arrows corresponding to the transformations and draw in the boxes the reactants or products as indicated. Note: Part A should have arrows drawn going from the reactants to the middle structure and the arrows on the middle structure that would yield the final structure. For part B, you will need to draw in the reactant before being able to draw the arrows corresponding to product formation. A. B. Rearrangement ΘΗarrow_forward
- 2. Draw the arrows required to make the following reactions occur. Please ensure your arrows point from exactly where you want to exactly where you want. If it is unclear from where arrows start or where they end, only partial credit will be given. Note: You may need to draw in lone pairs before drawing the arrows. A. B. H-Br 人 C Θ CI H Cl Θ + Br Oarrow_forward4. For the reactions below, draw the expected product. Be sure to indicate relevant stereochemistry or formal charges in the product structure. a) CI, H e b) H lux ligh Br 'Harrow_forwardArrange the solutions in order of increasing acidity. (Note that K (HF) = 6.8 x 10 and K (NH3) = 1.8 × 10-5) Rank solutions from least acidity to greatest acidity. To rank items as equivalent, overlap them. ▸ View Available Hint(s) Least acidity NH&F NaBr NaOH NH,Br NaCIO Reset Greatest acidityarrow_forward
- 1. Consider the following molecular-level diagrams of a titration. O-HA molecule -Aion °° о ° (a) о (b) (c) (d) a. Which diagram best illustrates the microscopic representation for the EQUIVALENCE POINT in a titration of a weak acid (HA) with sodium. hydroxide? (e)arrow_forwardAnswers to the remaining 6 questions will be hand-drawn on paper and submitted as a single file upload below: Review of this week's reaction: H₂NCN (cyanamide) + CH3NHCH2COOH (sarcosine) + NaCl, NH4OH, H₂O ---> H₂NC(=NH)N(CH3)CH2COOH (creatine) Q7. Draw by hand the reaction of creatine synthesis listed above using line structures without showing the Cs and some of the Hs, but include the lone pairs of electrons wherever they apply. (4 pts) Q8. Considering the Zwitterion form of an amino acid, draw the Zwitterion form of Creatine. (2 pts) Q9. Explain with drawing why the C-N bond shown in creatine structure below can or cannot rotate. (3 pts) NH2(C=NH)-N(CH)CH2COOH This bond Q10. Draw two tautomers of creatine using line structures. (Note: this question is valid because problem Q9 is valid). (4 pts) Q11. Mechanism. After seeing and understanding the mechanism of creatine synthesis, students should be ready to understand the first half of one of the Grignard reactions presented in a past…arrow_forwardPropose a synthesis pathway for the following transformations. b) c) d)arrow_forward
- The rate coefficient of the gas-phase reaction 2 NO2 + O3 → N2O5 + O2 is 2.0x104 mol–1 dm3 s–1 at 300 K. Indicate whether the order of the reaction is 0, 1, or 2.arrow_forward8. Draw all the resonance forms for each of the following molecules or ions, and indicate the major contributor in each case, or if they are equivalent. (4.5 pts) (a) PH2 سمةarrow_forward3. Assign absolute configuration (Rors) to each chirality center. a. H Nitz C. он b. 0 H-C. C H 7 C. ་-4 917-417 refs H 1つ ८ ડુ d. Но f. -2- 01 Ho -OH 2HNarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





