The increase in bond strength by the removal of an electron in case of O 2 and the decrease in bond strength by the removal of an electron from N 2 is to be explained. Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the H 2 + molecular ion. The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as, Bond order = [ ( Electrons in bonding orbitals ) − ( Electrons in anti-bonding orbitals ) ] 2 As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length. To determine: The reason behind the increase in bond strength in case of O 2 and the decrease in the same in case of N 2 on the removal of an electron.
The increase in bond strength by the removal of an electron in case of O 2 and the decrease in bond strength by the removal of an electron from N 2 is to be explained. Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the H 2 + molecular ion. The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as, Bond order = [ ( Electrons in bonding orbitals ) − ( Electrons in anti-bonding orbitals ) ] 2 As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length. To determine: The reason behind the increase in bond strength in case of O 2 and the decrease in the same in case of N 2 on the removal of an electron.
Solution Summary: The author explains that the increase in the bond order on the removal of an electron is the reason behind the stability of the O_ 2 molecule.
Interpretation: The increase in bond strength by the removal of an electron in case of
O2 and the decrease in bond strength by the removal of an electron from
N2 is to be explained.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
H2+ molecular ion.
The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as,
As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The reason behind the increase in bond strength in case of
O2 and the decrease in the same in case of
N2 on the removal of an electron.
The reaction is carried out with gases: A → B + C at 300 K. The
total pressure is measured as a function of time (table). If the
reaction order is 2, calculate the rate or kinetic constant k (in
mol-1 L s¹)
Ptotal (atm) 492 676 760 808 861
t(s)
0 600 1200 1800 3000
can someone give a description of this NMR including whether its a triplt singlet doublet where the peak is around at ppm and what functional group it represents
1. Determine the relationship between the following molecules as identical, diastereomers, or enantiomers (6
points, 2 points each).
OH
OH
OH
A-A
OH
HOT
HO-
ACHN
and
HO-
ACHN
OH
HO
HO
°
OH
and
OH
OH
SH
and
...SH
Chapter 4 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Quantum Molecular Orbital Theory (PChem Lecture: LCAO and gerade ungerade orbitals); Author: Prof Melko;https://www.youtube.com/watch?v=l59CGEstSGU;License: Standard YouTube License, CC-BY