The stable diatomic species from the given list, on the basis of the molecular orbital model, are to be identified. Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the H 2 + molecular ion. The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as, Bond order = [ ( Electrons in bonding orbitals ) − ( Electrons in anti-bonding orbitals ) ] 2 As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length. To determine: The most stable diatomic molecule/ion.
The stable diatomic species from the given list, on the basis of the molecular orbital model, are to be identified. Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the H 2 + molecular ion. The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as, Bond order = [ ( Electrons in bonding orbitals ) − ( Electrons in anti-bonding orbitals ) ] 2 As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length. To determine: The most stable diatomic molecule/ion.
Solution Summary: The author explains that the most stable diatomic molecule from the given list, on the basis of the molecular orbital model, are to be identified.
Interpretation: The stable diatomic species from the given list, on the basis of the molecular orbital model, are to be identified.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
H2+ molecular ion.
The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as,
As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The most stable diatomic molecule/ion.
(b)
Interpretation Introduction
Interpretation: The stable diatomic species from the given list, on the basis of the molecular orbital model, are to be identified.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
H2+ molecular ion.
The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as,
As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The most stable diatomic molecule/ion.
(c) The following data have been obtained for the hydrolysis of sucrose, C12H22O11, to
glucose, C6H12O6, and fructose C6H12O6, in acidic solution:
C12H22O11 + H2O → C6H12O6 + C6H12O6
[sucrose]/mol dm³
t/min
0
0.316
14
0.300
39
0.274
60
0.256
80
0.238
110
0.211
(i) Graphically prove the order of the reaction and determine the rate constant of the
reaction.
(ii) Determine the half-life, t½ for the hydrolysis of sucrose.
(III) adsorbent
(b) Adsorption of the hexacyanoferrate (III) ion, [Fe(CN)6] ³, on y-Al2O3 from aqueous
solution was examined. The adsorption was modelled using a modified Langmuir
isotherm, yielding the following values of Kat pH = 6.5:
(ii)
T/K
10-10 K
280
2.505
295
1.819
310
1.364
325
1.050
Determine the enthalpy of adsorption, AadsHⓇ.
If the reported value of entropy of adsorption, Aads Se = 146 J K-1 mol-1 under the above
conditions, determine Aads Gº.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell