Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 58P
A rotating fan completes 1200 revolutions every minute. Consider the tip of a blade, at a radius of 0.15 m. (a) Through what distance does the tip move in one revolution? What are (b) the tip’s speed and (c) the magnitude of its acceleration? (d) What is the period of the motion?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A rotating fan completes 1160 revolutions every minute. Consider the tip of a blade, at a radius of 18.0 cm. (a) Through what distance does the tip move in one revolution? What are (b) the tip's speed and (c) the magnitude of its acceleration? (d) What is the period of the motion?
A rotating fan completes 1100 revolutions every minute. Consider the tip of a blade, at a radius of 19.0 cm. (a) Through what distance does the tip move in one revolution? What are (b) the tip's speed and (c)
the magnitude of its acceleration? (d) What is the period of the motion?
(a) Number
Units
(b) Number
Units
(c) Number
Units
(d) Number
Units
A model of a helicopter rotor has four blades, each 3.40 m long from the central shaft to the blade tip. The model is rotated in a wind tunnel at 550 rev/min. (a) What is the linear speed of the blade tip, in m/s?
Chapter 4 Solutions
Fundamentals of Physics Extended
Ch. 4 - Figure 4-21 shows the path taken by a skunk...Ch. 4 - Prob. 2QCh. 4 - When Paris was shelled from 100 km away with the...Ch. 4 - You are to launch a rocket, from just above the...Ch. 4 - Figure 4-23 shows three situations in which...Ch. 4 - The only good use of a fruitcake is in catapult...Ch. 4 - An airplane flying horizontally at a constant...Ch. 4 - In Fig. 4-25, a cream tangerine is thrown up past...Ch. 4 - Figure 4-26 shows three paths for a football...Ch. 4 - A ball is shot from ground level over level ground...
Ch. 4 - Figure 4-28 shows four tracks either half- or...Ch. 4 - In Fig. 4-29, particle P is in uniform circular...Ch. 4 - a Is it possible to be accelerating while...Ch. 4 - While riding in a moving car, you toss an egg...Ch. 4 - A snowball is thrown from ground level by someone...Ch. 4 - You are driving directly behind a pickup truck,...Ch. 4 - At what point in the path of a projectile is the...Ch. 4 - In shot put, the shot is put thrown from above the...Ch. 4 - Prob. 1PCh. 4 - A watermelon seed has the following coordinates: x...Ch. 4 - A positron undergoes a displacement r = 2.0 i 3.0...Ch. 4 - The minute hand of a wall clock measures 10 cm...Ch. 4 - SSM A train at a constant 60.0 km/h moves east for...Ch. 4 - An electrons position is given by...Ch. 4 - An ions position vector is initially...Ch. 4 - A plane flies 483 km east from city A to city B in...Ch. 4 - Figure 4-30 gives the path of a squirrel moving...Ch. 4 - The position vector r=5.00ti+(et+ft2)j locates a...Ch. 4 - Prob. 11PCh. 4 - At one instant a bicyclist is 40.0 m due east of a...Ch. 4 - SSM A particle moves so that its position in...Ch. 4 - A proton initially has v=4.0i2.0j+3.0k and then...Ch. 4 - SSM ILW A particle leaves the origin with an...Ch. 4 - GO The velocity v of a particle moving in the xy...Ch. 4 - A cart is propelled over an xy plane with...Ch. 4 - A moderate wind accelerates a pebble over a...Ch. 4 - The acceleration of a particle moving only on a...Ch. 4 - GO In Fig. 4-32, particle A moves along the line y...Ch. 4 - A dart is thrown horizontally with an initial...Ch. 4 - A small ball rolls horizontally off the edge of a...Ch. 4 - A projectile is fired horizontally from a gun that...Ch. 4 - In the 1991 World Track and Field Championships in...Ch. 4 - The current world-record motorcycle jump is 77.0...Ch. 4 - A stone is catapulted at time t = 0, with an...Ch. 4 - ILW A certain airplane has a speed of 290.0 km/h...Ch. 4 - GO In Fig. 4-34, a stone is projected at a cliff...Ch. 4 - A projectiles launch speed is five times its speed...Ch. 4 - GO A soccer ball is kicked from the ground with an...Ch. 4 - In a jump spike, a volleyball player slams the...Ch. 4 - GO You throw a ball toward a wall at speed 25.0...Ch. 4 - SSM A plane, diving with constant speed at an...Ch. 4 - A trebuchet was a hurling machine built to attack...Ch. 4 - SSM A rifle that shoots bullets at 460 m/s is to...Ch. 4 - GO During a tennis match, a player serves the ball...Ch. 4 - SSM WWW A lowly high diver pushes off horizontally...Ch. 4 - A golf ball is struck at ground level. The speed...Ch. 4 - In Fig. 4-37, a ball is thrown leftward from the...Ch. 4 - Suppose that a shot putter can put a shot at the...Ch. 4 - GO Upon spotting an insect on a twig overhanging...Ch. 4 - In 1939 or 1940, Emanuel Zacchini took his human...Ch. 4 - ILW A ball is shot from the ground into the air....Ch. 4 - A baseball leaves a pitchers hand horizontally at...Ch. 4 - In Fig. 4-40, a ball is launched with a velocity...Ch. 4 - GO In basketball, hang is an illusion in which a...Ch. 4 - Prob. 47PCh. 4 - GO In Fig. 4-41, a ball is thrown up onto a roof,...Ch. 4 - SSM A football kicker can give the ball an initial...Ch. 4 - GO Two seconds after being projected from ground...Ch. 4 - A skilled skier knows to jump upward before...Ch. 4 - A ball is to be shot from level ground toward a...Ch. 4 - GO In Fig. 4-44, a baseball is hit at a height h =...Ch. 4 - GO A ball is to be shot from level ground with a...Ch. 4 - SSM A ball rolls horizontally off the top of a...Ch. 4 - An Earth satellite moves in a circular orbit 640...Ch. 4 - A carnival merry-go-round rotates about a vertical...Ch. 4 - A rotating fan completes 1200 revolutions every...Ch. 4 - ILW A woman rides a carnival Ferris wheel at...Ch. 4 - A centripetal-acceleration addict rides in uniform...Ch. 4 - When a large star becomes a supernova, its core...Ch. 4 - What is the magnitude of the acceleration of a...Ch. 4 - GO At t1 = 2.00 s, the acceleration of a particle...Ch. 4 - GO A particle moves horizontally in uniform...Ch. 4 - A purse at radius 2.00 m and a wallet at radius...Ch. 4 - A particle moves along a circular path over a...Ch. 4 - SSM WWW A boy whirls a stone in a horizontal...Ch. 4 - GO A cat rides a merry-go-round turning with...Ch. 4 - A cameraman on a pickup truck is traveling...Ch. 4 - A boat is traveling upstream in the positive...Ch. 4 - A suspicious-looking man runs as fast as he can...Ch. 4 - A rugby player runs with the ball directly toward...Ch. 4 - Two highways intersect as shown in Fig. 4-46. At...Ch. 4 - After flying for 15 min in a wind blowing 42 km/h...Ch. 4 - SSM A train travels due south at 30 m/s relative...Ch. 4 - A light plane attains an airspeed of 500 km/h. The...Ch. 4 - SSM Snow is falling vertically at a constant speed...Ch. 4 - In the overhead view of Fig. 4-47, Jeeps P and B...Ch. 4 - SSM ILW Two ships, A and B, leave port at the same...Ch. 4 - GO A 200-m-wide river flows due east at a uniform...Ch. 4 - GO Ship A is located 4.0 km north and 2.5 km east...Ch. 4 - GO A 200-m-wide river has a uniform flow speed of...Ch. 4 - A woman who can row a boat at 6.4 km/h in still...Ch. 4 - In Fig. 4-48a, a sled moves in the negative x...Ch. 4 - You are kidnapped by political-science majors who...Ch. 4 - A radar station detects an airplane approaching...Ch. 4 - SSM A baseball is hit at ground level. The ball...Ch. 4 - Long flights at midlatitudes in the Northern...Ch. 4 - SSM A particle starts from the origin at t = 0...Ch. 4 - At what initial speed must the basketball player...Ch. 4 - During volcanic eruptions, chunks of solid rock...Ch. 4 - An astronaut is rotated in a horizontal centrifuge...Ch. 4 - SSM Oasis A is 90 km due west of oasis B. A desert...Ch. 4 - Curtain of death. A large metallic asteroid...Ch. 4 - Figure 4-53 shows the straight path of a particle...Ch. 4 - For womens volleyball the top of the net is 2.24 m...Ch. 4 - SSM A rifle is aimed horizontally at a target 30 m...Ch. 4 - A particle is in uniform circular motion about the...Ch. 4 - In Fig. 4-54, a lump of wet putty moves in uniform...Ch. 4 - An iceboat sails across the surface of a frozen...Ch. 4 - In Fig. 4-55, a ball is shot directly upward from...Ch. 4 - A magnetic field forces an electron to move in a...Ch. 4 - In 3.50 h, a balloon drifts 21.5 km north, 9.70 km...Ch. 4 - A ball is thrown horizontally from a height of 20...Ch. 4 - A projectile is launched with an initial speed of...Ch. 4 - The position vector for a proton is initially...Ch. 4 - A particle P travels with constant speed on a...Ch. 4 - The fast French train known as the TGV Train ...Ch. 4 - a If an electron is projected horizontally with a...Ch. 4 - A person walks up a stalled 15-m-long escalator in...Ch. 4 - a What is the magnitude of the centripetal...Ch. 4 - The range of a projectile depends not only on v0...Ch. 4 - Figure 4-57 shows the path taken by a drunk skunk...Ch. 4 - The position vector r of a particle moving in the...Ch. 4 - An electron having an initial horizontal velocity...Ch. 4 - An elevator without a ceiling is ascending with a...Ch. 4 - A football player punts the football so that it...Ch. 4 - An airport terminal has a moving sidewalk to speed...Ch. 4 - Prob. 119PCh. 4 - A sprinter running on a circular track has a...Ch. 4 - Suppose that a space probe can withstand the...Ch. 4 - GO You are to throw a ball with a speed of 12.0...Ch. 4 - A projectile is fired with an initial speed v0 =...Ch. 4 - A graphing surprise. At time t = 0, a burrito is...Ch. 4 - A cannon located at sea level fires a ball with...Ch. 4 - The magnitude of the velocity of a projectile when...Ch. 4 - A frightened rabbit moving at 6.00 m/s due east...Ch. 4 - The pilot of an aircraft flies due east relative...Ch. 4 - The pitcher in a slow-pitch softball game releases...Ch. 4 - Some state trooper departments use aircraft to...Ch. 4 - A golfer tees off from the top of a rise, giving...Ch. 4 - A track meet is held on a planet in a distant...Ch. 4 - A helicopter is flying in a straight line over a...Ch. 4 - A car travels around a flat circle on the ground,...Ch. 4 - You throw a ball from a cliff with an initial...Ch. 4 - A baseball is hit at Fenway Park in Boston at a...Ch. 4 - A transcontinental flight of 4350 km is scheduled...Ch. 4 - A woman can row a boat at 6.40 km/h in still...
Additional Science Textbook Solutions
Find more solutions based on key concepts
8. A classic way to isolate thymidylate synthase—negative mutants of bacteria is to treat a growing culture wit...
Biochemistry: Concepts and Connections (2nd Edition)
Why can algae and cyanobacteria be considered indicators of productivity as well as of pollution?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Which compound is more easily decarboxylated?
Organic Chemistry (8th Edition)
Choose the best answer to each of the following. Explain your reasoning. What happen when a Proton collide with...
Cosmic Perspective Fundamentals
5.6 In Drosophila, the map positions of genes are given in map units numbering from one end of
a chromosome to...
Genetic Analysis: An Integrated Approach (3rd Edition)
A dual-fluid heat exchanger has l0Ibm/s water entering at l00F,20psia and leaving at 50F,20psia . The other flu...
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle moves along a circular path having a radius of 3.13 m. At an instant when the speed of the particle is equal to 6.29 m/s and changing at the rate of 6.02 m/s?, what is the magnitude of the total acceleration of the particle? Round your answer to 1 decimal place.arrow_forwardAn airplane makes a gradual 270° turn (heading goes from north to west to south to east) while flying at a constant speed of 212 m/s and maintaining the same altitude. The process takes 15.6 seconds to complete and the radius of the turn is 2105 m. For this turn, the magnitude of the average acceleration of the plane is?arrow_forwardTo anticipate the dip and the hump in the road, the driver of a car applies his brakes to produce a uniform deceleration. His speed is 100kph at the bottom A of the dip and 50 kph at the top Cof the hump. The length of the road from A to Cis 120m. The radius of curvature of the hump at C is 150m. The total acceleration at A is 3 m/s^2. Compute the radius of curvature at A. C 60 m В 60 m A A) 612.15m B) 502.39m c) 432.32m D 243.23m E) 549.81marrow_forward
- A particle travels in a circular path of diameter 2250 cm. It has a constant speed and an acceleration of 20 m/s.(a) What is the magnitude of the speed? (b) How long does it take for the particle to complete one trip around the circular path (its period)?arrow_forwardYour answer is partially correct. A particle moves horizontally in uniform circular motion, over a horizontal xy plane. At one instant, it moves through the point at coordinates (4.90 m, 3.70 m) with a velocity of -2.40 î m/s and an acceleration of +11.9 m/s². What are the (a) x and (b) y coordinates of the center of the circular path? (a) Number i 4.41 (b) Number i 3.70 Unit Unit m marrow_forwardAn astronaut is rotated in a horizontal centrifuge at a radius of 5.0 m. (a) What is the astronaut’s speed if the centripetal acceleration has a magnitude of 7.0g? (b) How many revolutions per minute are required to produce this acceleration? (c) What is the period of the motion?arrow_forward
- A particle's position is given as [(2.00 + 0.500 sin(0.4001))î + (3.00 + 0.500 sin(0.4004))ĵ] + 2.00/²k) m, where the angles in the equation are given in radians, the time in seconds and the position in meters. (a) Determine the position of the particle at t = 0. (b) Determine the speed of the particle at t = 0.200 s. (c) Determine the average acceleration of the particle betweent = 0.200 s and t = 0.400 s.arrow_forwardTo anticipate the dip and the hump in the road, the driver of a car applies his brakes to produce a uniform deceleration. His speed is 100kph at the bottom A of the dip and 50 kph at the top C of the hump. The length of the road from A to Cis 120m. The radius of curvature of the hump at C is 150m. The total acceleration at A is 3 m/s^2. Compute the total acceleration in m/s^2 at C. 60 m В 60 m A A) 3.69 2.66 2.73 D) 3.08 E) 2.96arrow_forwardA car initially traveling eastward turns north by traveling in a circular path at uniform speed as shown in above figure. The length of the arc ABC is 235m, and the car completes the turn in 36.0s. (a) What is the acceleration when the car is at B located at an angle of 35.08? Express your answer in terms of the unit vectors i^ and j . Determine (b) the cars average speed and (c) its average acceleration during the 36.0s interval.arrow_forward
- The equation r(t) = (/2t) i+ (/2t- 16t2) j is the position of a particle in space at time t. Find the angle between the velocity and acceleration vectors at time t= 0. The angle between the velocity and acceleration vectors at time t = 0 is radians. (Type an exact answer, using n as needed.)arrow_forwardAn airplane flying horizontally at a velocity of 138 m/s and at an altitude of 1500 meters when one of its wheels falls off. a) How long (in seconds) does it take the wheel to reach the ground? b) What horizontal distance (in meters) will the wheel travel before it strikes the ground?arrow_forwardThe radius of the earth’s orbit around the sun (assumed circular) is 1.50 x 108 km and the earth travels around this orbit in 365 days. (a) What is the magnitude of the orbital velocity of the earth in m/s? (b) What is the radial acceleration of the earth toward the sun in m/s2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY