Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 56P
An Earth satellite moves in a circular orbit 640 km (uniform circular motion) above Earth’s surface with a period of 98.0 min. What are (a) the speed and (b) the magnitude of the centripetal acceleration of the satellite?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
An Earth satellite moves in a circular orbit 640 km (uniform circular motion) above Earth’s surface with a period of 98.0 min. What are (a) the speed and (b) the magnitude of the centripetal acceleration of the satellite?
A woman rides a carnival Ferris wheel at radius 15 m, completing five turns about its horizontal axis every minute.What are (a) the period of the motion, the (b) magnitude and (c) direction of her centripetal acceleration at the highest point, and the (d) magnitude and (e) direction of her centripetal acceleration at the lowest point?
A hawk flies at 12.0 m/s in a horizontal circle of radius 12.0 m.
Now suppose it flaps its wings harder and increases its circular speed at the rate of 1.20 m/s2 while staying in the same circular path. What is the magnitude of its acceleration, and in what direction is the acceleration vector?
Chapter 4 Solutions
Fundamentals of Physics Extended
Ch. 4 - Figure 4-21 shows the path taken by a skunk...Ch. 4 - Prob. 2QCh. 4 - When Paris was shelled from 100 km away with the...Ch. 4 - You are to launch a rocket, from just above the...Ch. 4 - Figure 4-23 shows three situations in which...Ch. 4 - The only good use of a fruitcake is in catapult...Ch. 4 - An airplane flying horizontally at a constant...Ch. 4 - In Fig. 4-25, a cream tangerine is thrown up past...Ch. 4 - Figure 4-26 shows three paths for a football...Ch. 4 - A ball is shot from ground level over level ground...
Ch. 4 - Figure 4-28 shows four tracks either half- or...Ch. 4 - In Fig. 4-29, particle P is in uniform circular...Ch. 4 - a Is it possible to be accelerating while...Ch. 4 - While riding in a moving car, you toss an egg...Ch. 4 - A snowball is thrown from ground level by someone...Ch. 4 - You are driving directly behind a pickup truck,...Ch. 4 - At what point in the path of a projectile is the...Ch. 4 - In shot put, the shot is put thrown from above the...Ch. 4 - Prob. 1PCh. 4 - A watermelon seed has the following coordinates: x...Ch. 4 - A positron undergoes a displacement r = 2.0 i 3.0...Ch. 4 - The minute hand of a wall clock measures 10 cm...Ch. 4 - SSM A train at a constant 60.0 km/h moves east for...Ch. 4 - An electrons position is given by...Ch. 4 - An ions position vector is initially...Ch. 4 - A plane flies 483 km east from city A to city B in...Ch. 4 - Figure 4-30 gives the path of a squirrel moving...Ch. 4 - The position vector r=5.00ti+(et+ft2)j locates a...Ch. 4 - Prob. 11PCh. 4 - At one instant a bicyclist is 40.0 m due east of a...Ch. 4 - SSM A particle moves so that its position in...Ch. 4 - A proton initially has v=4.0i2.0j+3.0k and then...Ch. 4 - SSM ILW A particle leaves the origin with an...Ch. 4 - GO The velocity v of a particle moving in the xy...Ch. 4 - A cart is propelled over an xy plane with...Ch. 4 - A moderate wind accelerates a pebble over a...Ch. 4 - The acceleration of a particle moving only on a...Ch. 4 - GO In Fig. 4-32, particle A moves along the line y...Ch. 4 - A dart is thrown horizontally with an initial...Ch. 4 - A small ball rolls horizontally off the edge of a...Ch. 4 - A projectile is fired horizontally from a gun that...Ch. 4 - In the 1991 World Track and Field Championships in...Ch. 4 - The current world-record motorcycle jump is 77.0...Ch. 4 - A stone is catapulted at time t = 0, with an...Ch. 4 - ILW A certain airplane has a speed of 290.0 km/h...Ch. 4 - GO In Fig. 4-34, a stone is projected at a cliff...Ch. 4 - A projectiles launch speed is five times its speed...Ch. 4 - GO A soccer ball is kicked from the ground with an...Ch. 4 - In a jump spike, a volleyball player slams the...Ch. 4 - GO You throw a ball toward a wall at speed 25.0...Ch. 4 - SSM A plane, diving with constant speed at an...Ch. 4 - A trebuchet was a hurling machine built to attack...Ch. 4 - SSM A rifle that shoots bullets at 460 m/s is to...Ch. 4 - GO During a tennis match, a player serves the ball...Ch. 4 - SSM WWW A lowly high diver pushes off horizontally...Ch. 4 - A golf ball is struck at ground level. The speed...Ch. 4 - In Fig. 4-37, a ball is thrown leftward from the...Ch. 4 - Suppose that a shot putter can put a shot at the...Ch. 4 - GO Upon spotting an insect on a twig overhanging...Ch. 4 - In 1939 or 1940, Emanuel Zacchini took his human...Ch. 4 - ILW A ball is shot from the ground into the air....Ch. 4 - A baseball leaves a pitchers hand horizontally at...Ch. 4 - In Fig. 4-40, a ball is launched with a velocity...Ch. 4 - GO In basketball, hang is an illusion in which a...Ch. 4 - Prob. 47PCh. 4 - GO In Fig. 4-41, a ball is thrown up onto a roof,...Ch. 4 - SSM A football kicker can give the ball an initial...Ch. 4 - GO Two seconds after being projected from ground...Ch. 4 - A skilled skier knows to jump upward before...Ch. 4 - A ball is to be shot from level ground toward a...Ch. 4 - GO In Fig. 4-44, a baseball is hit at a height h =...Ch. 4 - GO A ball is to be shot from level ground with a...Ch. 4 - SSM A ball rolls horizontally off the top of a...Ch. 4 - An Earth satellite moves in a circular orbit 640...Ch. 4 - A carnival merry-go-round rotates about a vertical...Ch. 4 - A rotating fan completes 1200 revolutions every...Ch. 4 - ILW A woman rides a carnival Ferris wheel at...Ch. 4 - A centripetal-acceleration addict rides in uniform...Ch. 4 - When a large star becomes a supernova, its core...Ch. 4 - What is the magnitude of the acceleration of a...Ch. 4 - GO At t1 = 2.00 s, the acceleration of a particle...Ch. 4 - GO A particle moves horizontally in uniform...Ch. 4 - A purse at radius 2.00 m and a wallet at radius...Ch. 4 - A particle moves along a circular path over a...Ch. 4 - SSM WWW A boy whirls a stone in a horizontal...Ch. 4 - GO A cat rides a merry-go-round turning with...Ch. 4 - A cameraman on a pickup truck is traveling...Ch. 4 - A boat is traveling upstream in the positive...Ch. 4 - A suspicious-looking man runs as fast as he can...Ch. 4 - A rugby player runs with the ball directly toward...Ch. 4 - Two highways intersect as shown in Fig. 4-46. At...Ch. 4 - After flying for 15 min in a wind blowing 42 km/h...Ch. 4 - SSM A train travels due south at 30 m/s relative...Ch. 4 - A light plane attains an airspeed of 500 km/h. The...Ch. 4 - SSM Snow is falling vertically at a constant speed...Ch. 4 - In the overhead view of Fig. 4-47, Jeeps P and B...Ch. 4 - SSM ILW Two ships, A and B, leave port at the same...Ch. 4 - GO A 200-m-wide river flows due east at a uniform...Ch. 4 - GO Ship A is located 4.0 km north and 2.5 km east...Ch. 4 - GO A 200-m-wide river has a uniform flow speed of...Ch. 4 - A woman who can row a boat at 6.4 km/h in still...Ch. 4 - In Fig. 4-48a, a sled moves in the negative x...Ch. 4 - You are kidnapped by political-science majors who...Ch. 4 - A radar station detects an airplane approaching...Ch. 4 - SSM A baseball is hit at ground level. The ball...Ch. 4 - Long flights at midlatitudes in the Northern...Ch. 4 - SSM A particle starts from the origin at t = 0...Ch. 4 - At what initial speed must the basketball player...Ch. 4 - During volcanic eruptions, chunks of solid rock...Ch. 4 - An astronaut is rotated in a horizontal centrifuge...Ch. 4 - SSM Oasis A is 90 km due west of oasis B. A desert...Ch. 4 - Curtain of death. A large metallic asteroid...Ch. 4 - Figure 4-53 shows the straight path of a particle...Ch. 4 - For womens volleyball the top of the net is 2.24 m...Ch. 4 - SSM A rifle is aimed horizontally at a target 30 m...Ch. 4 - A particle is in uniform circular motion about the...Ch. 4 - In Fig. 4-54, a lump of wet putty moves in uniform...Ch. 4 - An iceboat sails across the surface of a frozen...Ch. 4 - In Fig. 4-55, a ball is shot directly upward from...Ch. 4 - A magnetic field forces an electron to move in a...Ch. 4 - In 3.50 h, a balloon drifts 21.5 km north, 9.70 km...Ch. 4 - A ball is thrown horizontally from a height of 20...Ch. 4 - A projectile is launched with an initial speed of...Ch. 4 - The position vector for a proton is initially...Ch. 4 - A particle P travels with constant speed on a...Ch. 4 - The fast French train known as the TGV Train ...Ch. 4 - a If an electron is projected horizontally with a...Ch. 4 - A person walks up a stalled 15-m-long escalator in...Ch. 4 - a What is the magnitude of the centripetal...Ch. 4 - The range of a projectile depends not only on v0...Ch. 4 - Figure 4-57 shows the path taken by a drunk skunk...Ch. 4 - The position vector r of a particle moving in the...Ch. 4 - An electron having an initial horizontal velocity...Ch. 4 - An elevator without a ceiling is ascending with a...Ch. 4 - A football player punts the football so that it...Ch. 4 - An airport terminal has a moving sidewalk to speed...Ch. 4 - Prob. 119PCh. 4 - A sprinter running on a circular track has a...Ch. 4 - Suppose that a space probe can withstand the...Ch. 4 - GO You are to throw a ball with a speed of 12.0...Ch. 4 - A projectile is fired with an initial speed v0 =...Ch. 4 - A graphing surprise. At time t = 0, a burrito is...Ch. 4 - A cannon located at sea level fires a ball with...Ch. 4 - The magnitude of the velocity of a projectile when...Ch. 4 - A frightened rabbit moving at 6.00 m/s due east...Ch. 4 - The pilot of an aircraft flies due east relative...Ch. 4 - The pitcher in a slow-pitch softball game releases...Ch. 4 - Some state trooper departments use aircraft to...Ch. 4 - A golfer tees off from the top of a rise, giving...Ch. 4 - A track meet is held on a planet in a distant...Ch. 4 - A helicopter is flying in a straight line over a...Ch. 4 - A car travels around a flat circle on the ground,...Ch. 4 - You throw a ball from a cliff with an initial...Ch. 4 - A baseball is hit at Fenway Park in Boston at a...Ch. 4 - A transcontinental flight of 4350 km is scheduled...Ch. 4 - A woman can row a boat at 6.40 km/h in still...
Additional Science Textbook Solutions
Find more solutions based on key concepts
21. Two -diameter aluminum electrodes are spaced apart.
The electrodes are connected to a battery.
...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk(*) desig...
Cosmic Perspective Fundamentals
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
41. Humans vary in many ways from one another. Among many minor phenotypic differences are the following five i...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hiker walks from (x1, y1) = (4.00 km. 3.00 km) to (x2, y2) = (3.00 km, 6.00 km), (a) What distance has the traveled? (b) The hiker desires to return to his starting point. In what direction should he go? (Give the angle with respect to due cast.) (See Sections 3.2 and 3.3.)arrow_forwardA sprinter running on a circular track has a velocity of constant magnitude 9.20 m/s and a centripetal acceleration of magnitude 3.80 m/s2.What are (a) the track radius and (b) the period of the circular motion?arrow_forwardA particle has a centripetal acceleration of ac = 7.47 m/s2. It is executing uniform circular motion and the shortest straight-line distance between the particle and the axis is r = 5.95 m. Part (a) Write an expression for the speed v of the particle. Part (b) What is the speed of the particle in m/s?arrow_forward
- Fig. 3 a = ² 15.0 m/s i 2.50 m 30.0° 3. Fig. 3 represents the total acceleration of a particle moving clockwise in a cirele of radius 2.50 m at a certain instant of time. For that instant, find: (a) the radial acceleration of the particle, (b) the speed of the particle, (c) its tangential acceleration.arrow_forwardA particle moves in the xy plane in a circle centered at the origin. At a certain instant the velocity and acceleration of the particle are 6.0i m / s and (3.0i + 4.0j) m / s2 respectively. What are the x and y coordinates of the particle at this time?arrow_forwardA car travels around a flat circle on the ground, at a constant speed of 12.0 m/s. At a certain instant the car has an acceleration of 3.00 m/s2 toward the east.What are its distance and direction from the center of the circle at that instant if it is traveling (a) clockwise around the circle and (b) counterclockwise around the circle?arrow_forward
- A Ferris wheel with a radius of 24.0 m is turning about a horizontal axis through its center as shown in the figure. The speed of a passenger on the rim is constant and equal to 6.00 m/. What is the magnitude and direction of the passenger's acceleration as she passes through the (a) lowest point in her circular motion and by the highest point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution? (d) Include a diagram of the passenger on the Ferris wheel at both locations and clearly indicate both the velocity and acceleration vectors of the passenger in the diagramarrow_forwardA particle travels in a circular orbit of radius 10 m. Its speed is changing at a rate of 15.0 m/s2 at an instant when its speed is 40.0 m/s. What is the magnitude of the acceleration of the particle?arrow_forwarda = 15.0 m/s² 4. The Figure represents the total acceleration of a particle moving clockwise in a circle of radius 2.50 mat a certain instant of time. For that instant, find (a) the radial acceleration of the particle, (b) the speed of the particle, and (c) its tangential acceleration 2.50 m 30.0°arrow_forward
- A pursue at radius 2.00 m and a wallet at radius 3.00 m travel in uniform circular motion on the floor of a merry-go-round as the ride turns. They are on the same radial line. At one instant, the acceleration of the pursue is (2.00 m/s^2)i + (4.00 m/s^2)j. At the instant and in unit-vector notation, what is the acceleration of the wallet?arrow_forwardA particle moves along a circular path of radius 5 ft. If its position is 0 = (e0.5t) rad/s, where t is in seconds, determine the magnitude of the particle's acceleration when 0 = 90°.arrow_forwardThe Moon orbits the Earth in an approximately circular path. The velocity of the moon as a function of time is given by:vx = −v sin(?t)vy = v cos(?t)where v = 945 m/s and ? = 2.46 10-6 radians/s. What is the average acceleration of the Moon over the following time intervals? For each, give the magnitude and direction as an angle measured counterclockwise from the positive x-axis.(a) from t = 0 to t = 0.200 daysmagnitude ______m/s2direction ______° counterclockwise from the +x-axis (b) from t = 0 to t = 0.0020 daysmagnitude ______m/s2direction ______° counterclockwise from the +x-axisarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY