Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 11Q
Figure 4-28 shows four tracks (either half- or quarter-circles) that can be taken by a train, which moves at a constant speed. Rank the tracks according to the magnitude of a train’s acceleration on the curved portion, greatest first.
Figure 4-28 Question 11.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle moves at constant speed in a circle of radius 2.06 cm. If the particle makes four revolutions every second, determine the magnitude of its acceleration
A car is traveling along a straight highway with a speed of 72 kph (20 m/s) when the driver suddenly applies the brakes
just before entering the curved section A-B, REDUCING its speed at a constant rate until it reaches point B. The 90-m
long curved section A-B has a constant radius of curvature r. An accelerometer mounted on the car recorded a total
acceleration of 1.74m/s² just before the car passes point B.
B.
I 06
1. Which of the following is FALSE regarding the car's motion along the curved section A-B?
Its velocity is decreasing and is tangent to its path.
Its tangential acceleration is tangent to its path.
Its acceleration is increasing in magnitude.
Its normal acceleration is directed towards the center of curvature of the path.
(a) What is the magnitude of the centripetal acceleration of an object on Earth’s equator due to the rotation of Earth? (b) What would Earth’s rotation period have to be for objects on the equator to have a centripetal acceleration of magnitude 9.8 m/s2?
Chapter 4 Solutions
Fundamentals of Physics Extended
Ch. 4 - Figure 4-21 shows the path taken by a skunk...Ch. 4 - Prob. 2QCh. 4 - When Paris was shelled from 100 km away with the...Ch. 4 - You are to launch a rocket, from just above the...Ch. 4 - Figure 4-23 shows three situations in which...Ch. 4 - The only good use of a fruitcake is in catapult...Ch. 4 - An airplane flying horizontally at a constant...Ch. 4 - In Fig. 4-25, a cream tangerine is thrown up past...Ch. 4 - Figure 4-26 shows three paths for a football...Ch. 4 - A ball is shot from ground level over level ground...
Ch. 4 - Figure 4-28 shows four tracks either half- or...Ch. 4 - In Fig. 4-29, particle P is in uniform circular...Ch. 4 - a Is it possible to be accelerating while...Ch. 4 - While riding in a moving car, you toss an egg...Ch. 4 - A snowball is thrown from ground level by someone...Ch. 4 - You are driving directly behind a pickup truck,...Ch. 4 - At what point in the path of a projectile is the...Ch. 4 - In shot put, the shot is put thrown from above the...Ch. 4 - Prob. 1PCh. 4 - A watermelon seed has the following coordinates: x...Ch. 4 - A positron undergoes a displacement r = 2.0 i 3.0...Ch. 4 - The minute hand of a wall clock measures 10 cm...Ch. 4 - SSM A train at a constant 60.0 km/h moves east for...Ch. 4 - An electrons position is given by...Ch. 4 - An ions position vector is initially...Ch. 4 - A plane flies 483 km east from city A to city B in...Ch. 4 - Figure 4-30 gives the path of a squirrel moving...Ch. 4 - The position vector r=5.00ti+(et+ft2)j locates a...Ch. 4 - Prob. 11PCh. 4 - At one instant a bicyclist is 40.0 m due east of a...Ch. 4 - SSM A particle moves so that its position in...Ch. 4 - A proton initially has v=4.0i2.0j+3.0k and then...Ch. 4 - SSM ILW A particle leaves the origin with an...Ch. 4 - GO The velocity v of a particle moving in the xy...Ch. 4 - A cart is propelled over an xy plane with...Ch. 4 - A moderate wind accelerates a pebble over a...Ch. 4 - The acceleration of a particle moving only on a...Ch. 4 - GO In Fig. 4-32, particle A moves along the line y...Ch. 4 - A dart is thrown horizontally with an initial...Ch. 4 - A small ball rolls horizontally off the edge of a...Ch. 4 - A projectile is fired horizontally from a gun that...Ch. 4 - In the 1991 World Track and Field Championships in...Ch. 4 - The current world-record motorcycle jump is 77.0...Ch. 4 - A stone is catapulted at time t = 0, with an...Ch. 4 - ILW A certain airplane has a speed of 290.0 km/h...Ch. 4 - GO In Fig. 4-34, a stone is projected at a cliff...Ch. 4 - A projectiles launch speed is five times its speed...Ch. 4 - GO A soccer ball is kicked from the ground with an...Ch. 4 - In a jump spike, a volleyball player slams the...Ch. 4 - GO You throw a ball toward a wall at speed 25.0...Ch. 4 - SSM A plane, diving with constant speed at an...Ch. 4 - A trebuchet was a hurling machine built to attack...Ch. 4 - SSM A rifle that shoots bullets at 460 m/s is to...Ch. 4 - GO During a tennis match, a player serves the ball...Ch. 4 - SSM WWW A lowly high diver pushes off horizontally...Ch. 4 - A golf ball is struck at ground level. The speed...Ch. 4 - In Fig. 4-37, a ball is thrown leftward from the...Ch. 4 - Suppose that a shot putter can put a shot at the...Ch. 4 - GO Upon spotting an insect on a twig overhanging...Ch. 4 - In 1939 or 1940, Emanuel Zacchini took his human...Ch. 4 - ILW A ball is shot from the ground into the air....Ch. 4 - A baseball leaves a pitchers hand horizontally at...Ch. 4 - In Fig. 4-40, a ball is launched with a velocity...Ch. 4 - GO In basketball, hang is an illusion in which a...Ch. 4 - Prob. 47PCh. 4 - GO In Fig. 4-41, a ball is thrown up onto a roof,...Ch. 4 - SSM A football kicker can give the ball an initial...Ch. 4 - GO Two seconds after being projected from ground...Ch. 4 - A skilled skier knows to jump upward before...Ch. 4 - A ball is to be shot from level ground toward a...Ch. 4 - GO In Fig. 4-44, a baseball is hit at a height h =...Ch. 4 - GO A ball is to be shot from level ground with a...Ch. 4 - SSM A ball rolls horizontally off the top of a...Ch. 4 - An Earth satellite moves in a circular orbit 640...Ch. 4 - A carnival merry-go-round rotates about a vertical...Ch. 4 - A rotating fan completes 1200 revolutions every...Ch. 4 - ILW A woman rides a carnival Ferris wheel at...Ch. 4 - A centripetal-acceleration addict rides in uniform...Ch. 4 - When a large star becomes a supernova, its core...Ch. 4 - What is the magnitude of the acceleration of a...Ch. 4 - GO At t1 = 2.00 s, the acceleration of a particle...Ch. 4 - GO A particle moves horizontally in uniform...Ch. 4 - A purse at radius 2.00 m and a wallet at radius...Ch. 4 - A particle moves along a circular path over a...Ch. 4 - SSM WWW A boy whirls a stone in a horizontal...Ch. 4 - GO A cat rides a merry-go-round turning with...Ch. 4 - A cameraman on a pickup truck is traveling...Ch. 4 - A boat is traveling upstream in the positive...Ch. 4 - A suspicious-looking man runs as fast as he can...Ch. 4 - A rugby player runs with the ball directly toward...Ch. 4 - Two highways intersect as shown in Fig. 4-46. At...Ch. 4 - After flying for 15 min in a wind blowing 42 km/h...Ch. 4 - SSM A train travels due south at 30 m/s relative...Ch. 4 - A light plane attains an airspeed of 500 km/h. The...Ch. 4 - SSM Snow is falling vertically at a constant speed...Ch. 4 - In the overhead view of Fig. 4-47, Jeeps P and B...Ch. 4 - SSM ILW Two ships, A and B, leave port at the same...Ch. 4 - GO A 200-m-wide river flows due east at a uniform...Ch. 4 - GO Ship A is located 4.0 km north and 2.5 km east...Ch. 4 - GO A 200-m-wide river has a uniform flow speed of...Ch. 4 - A woman who can row a boat at 6.4 km/h in still...Ch. 4 - In Fig. 4-48a, a sled moves in the negative x...Ch. 4 - You are kidnapped by political-science majors who...Ch. 4 - A radar station detects an airplane approaching...Ch. 4 - SSM A baseball is hit at ground level. The ball...Ch. 4 - Long flights at midlatitudes in the Northern...Ch. 4 - SSM A particle starts from the origin at t = 0...Ch. 4 - At what initial speed must the basketball player...Ch. 4 - During volcanic eruptions, chunks of solid rock...Ch. 4 - An astronaut is rotated in a horizontal centrifuge...Ch. 4 - SSM Oasis A is 90 km due west of oasis B. A desert...Ch. 4 - Curtain of death. A large metallic asteroid...Ch. 4 - Figure 4-53 shows the straight path of a particle...Ch. 4 - For womens volleyball the top of the net is 2.24 m...Ch. 4 - SSM A rifle is aimed horizontally at a target 30 m...Ch. 4 - A particle is in uniform circular motion about the...Ch. 4 - In Fig. 4-54, a lump of wet putty moves in uniform...Ch. 4 - An iceboat sails across the surface of a frozen...Ch. 4 - In Fig. 4-55, a ball is shot directly upward from...Ch. 4 - A magnetic field forces an electron to move in a...Ch. 4 - In 3.50 h, a balloon drifts 21.5 km north, 9.70 km...Ch. 4 - A ball is thrown horizontally from a height of 20...Ch. 4 - A projectile is launched with an initial speed of...Ch. 4 - The position vector for a proton is initially...Ch. 4 - A particle P travels with constant speed on a...Ch. 4 - The fast French train known as the TGV Train ...Ch. 4 - a If an electron is projected horizontally with a...Ch. 4 - A person walks up a stalled 15-m-long escalator in...Ch. 4 - a What is the magnitude of the centripetal...Ch. 4 - The range of a projectile depends not only on v0...Ch. 4 - Figure 4-57 shows the path taken by a drunk skunk...Ch. 4 - The position vector r of a particle moving in the...Ch. 4 - An electron having an initial horizontal velocity...Ch. 4 - An elevator without a ceiling is ascending with a...Ch. 4 - A football player punts the football so that it...Ch. 4 - An airport terminal has a moving sidewalk to speed...Ch. 4 - Prob. 119PCh. 4 - A sprinter running on a circular track has a...Ch. 4 - Suppose that a space probe can withstand the...Ch. 4 - GO You are to throw a ball with a speed of 12.0...Ch. 4 - A projectile is fired with an initial speed v0 =...Ch. 4 - A graphing surprise. At time t = 0, a burrito is...Ch. 4 - A cannon located at sea level fires a ball with...Ch. 4 - The magnitude of the velocity of a projectile when...Ch. 4 - A frightened rabbit moving at 6.00 m/s due east...Ch. 4 - The pilot of an aircraft flies due east relative...Ch. 4 - The pitcher in a slow-pitch softball game releases...Ch. 4 - Some state trooper departments use aircraft to...Ch. 4 - A golfer tees off from the top of a rise, giving...Ch. 4 - A track meet is held on a planet in a distant...Ch. 4 - A helicopter is flying in a straight line over a...Ch. 4 - A car travels around a flat circle on the ground,...Ch. 4 - You throw a ball from a cliff with an initial...Ch. 4 - A baseball is hit at Fenway Park in Boston at a...Ch. 4 - A transcontinental flight of 4350 km is scheduled...Ch. 4 - A woman can row a boat at 6.40 km/h in still...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
12.1 Give the IUPAC name for each of the following:
a. CH3-CH2-OH
b.
c.
d.
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
If a process in a control mass increases energy E2E10 , can you say anything about the sign for 1Q2 and 1W2 ?
Fundamentals Of Thermodynamics
Which of the following factors would tend to increase membrane fluidity? A. a greater proportion of unsaturated...
Campbell Biology in Focus (2nd Edition)
5.4 Genes E and H are syntenic in an experimental organism with the genotype . Assume
that during each meiosis,...
Genetic Analysis: An Integrated Approach (3rd Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- To anticipate the dip and the hump in the road, the driver of a car applies his brakes to produce a uniform deceleration. His speed is 100kph at the bottom A of the dip and 50 kph at the top C of the hump. The length of the road from A to Cis 120m. The radius of curvature of the hump at C is 150m. The total acceleration at A is 3 m/s^2. Compute the total acceleration in m/s^2 at C. 60 m В 60 m A A) 3.69 2.66 2.73 D) 3.08 E) 2.96arrow_forwardAn airplane in a holding pattern flies at constant altitude along a circular path of radius 3.42 km. If the airplane rounds half the circle in 172 s, determine the following. (a)Determine the magnitude of the airplane's displacement during the given time (in m). (b)Determine the magnitude of the airplane's average velocity during the given time (in m/s). (c)What is the airplane's average speed during the same time interval (in m/s)?arrow_forwardAt an altitude of 4 times the radius of the earth, the acceleration due to gravity isarrow_forward
- The velocity of a particle is given by v = {16t’i + 4t°j + (5t + 2)k} m/s, where t is in seconds. If the particle if at the origin when t = 0, determine the z-coordinate position %3D of the particle when t = 2 s.arrow_forwardA car is moving around a circular track. At the beginning of a time interval it is moving at 100 km/h north. At the end of the time interval it is moving at 100 km/h west. The average change in velocity of the car points approximatelyarrow_forwardTo anticipate the dip and the hump in the road, the driver of a car applies his brakes to produce a uniform deceleration. His speed is 100kph at the bottom A of the dip and 50 kph at the top Cof the hump. The length of the road from A to Cis 120m. The radius of curvature of the hump at C is 150m. The total acceleration at A is 3 m/s^2. Compute the radius of curvature at A. C 60 m В 60 m A A) 612.15m B) 502.39m c) 432.32m D 243.23m E) 549.81marrow_forward
- A car P travels along a straight road with a constant speed v = 62 mi/hr. At the instant when the angle e = 58°, determine the rate at which the distance of the car from point O varies with time (ft/s) if d=105ft . Round off only on final answer expressed in three decimal places.arrow_forwardThe Sun orbits the center of the Milky Way galaxy once each 2.60 × 108 years, with a roughly circular orbit averaging 3.00 × 104 light years in radius. (A light year is the distance traveled by light in 1 y.) Calculate the average speed of the Sun in its galactic orbit in m/s.arrow_forwardA robot arm moves so that P travels in a circle about Point B, which is not moving. Knowing that P starts from rest, and its speed increases at a constant rate of 5 mm/s?, determine (a) the magnitude of the acceleration when t=6 s, (b) the time for the magnitude of the acceleration to be 90 mm/s?. 0.8 m Barrow_forward
- You throw a ball toward a wall at speed 25.0 m/s and at angleθ = 40.0 degrees above the horizontal. (Fig. 4-38) The wallis distance d = 22.0 m from the release point of the ball.(a) How far above the release point does the ball hit the wall?What are the (b) horizontal and (c) vertical components of itsvelocity as it hits the wall? (d) When it hits, has it passed the highest point on its trajectory?arrow_forwardThe CERN particle accelerator is circular with a circumference of 7.0 km. (a) What is the acceleration of the protons (m = 1.67 × 10-27 kg) that move around the accelerator at 5% of the speed of light? (The speed of light is v = 3.00 × 108 m/s.)arrow_forwardTo anticipate the dip and the hump in the road, the driver of a car applies his brakes to produce a uniform deceleration. His speed is 100kph at the bottom A of the dip and 50 kph at the top C of the hump. The length of the road from A to Cis 120m. The radius of curvature of the hump at C is 150m. The total acceleration at A is 3 m/s^2. Determine the acceleration in m/s^2 at the point of inflection B? 60 m B. 60 m A A) 2.56 B) 4.12 c) 3.01 D 2.86 E) 2.41arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY