
University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 57P
Two hundred grams of water at 0 ℃ is brought into contact with a heat reservoir at 80 ℃. After thermal equilibrium is reached, what is the temperature of the water? Of the reservoir? How much heat has been transferred in the process? What is the entropy change of the water? Of the reservoir? What is the entropy change of the universe?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
If a 1/2 inch diameter drill bit spins at 3000 rotations per minute, how fast is the outer edge moving as it contacts a piece of metal while drilling a machine part?
Need help with the third question (C)A gymnast weighing 68 kg attempts a handstand using only one arm. He plants his hand at an angl reesulting in the reaction force shown.
Q: What is the direction of the force on the current carrying conductor in the
magnetic field in each of the cases 1 to 8 shown below?
(1)
B
B
B into page
X X X
x
X X X X
(2)
B
11 -10°
B
x I
B
I out of page
(3)
I into page
(4)
B out of page
out of page
I
N
N
S
x X X X
I
X
X X X
I
(5)
(6)
(7)
(8)
S
Chapter 4 Solutions
University Physics Volume 2
Ch. 4 - Check Your Understanding What is the efficiency of...Ch. 4 - Check your Understanding Show that QhQh=QcQc for...Ch. 4 - Check Your Understanding A Carnot engine operates...Ch. 4 - Check Your Understanding A Carnot refrigerator...Ch. 4 - Check Your Understanding In Example 4.7, the...Ch. 4 - Check Your Understanding A quantity of heat Q is...Ch. 4 - Check Your Understanding A 50-g copper piece at a...Ch. 4 - State an example of a process that occurs in...Ch. 4 - Explain in practical terms why efficiency is...Ch. 4 - If the refrigerator door is left what happens to...
Ch. 4 - Is it possible for the efficiency of a reversible...Ch. 4 - In the text, we showed that if the Clausius...Ch. 4 - Why don't we operate ocean liners by extracting...Ch. 4 - Discuss the practical advantages and disadvantages...Ch. 4 - The energy output of a heat pump is greater than...Ch. 4 - Speculate as to why nuclear power plants are less...Ch. 4 - An ideal gas goes from state (pi,vi,) to state...Ch. 4 - To increase the efficiency of a Carnot engine,...Ch. 4 - How could you design a Carnot engine with 100%...Ch. 4 - What type of processes occur in a Carnot cycle?Ch. 4 - Does the entropy increase for a Carnot engine for...Ch. 4 - Is it possible for a system to have an entropy...Ch. 4 - Are the entropy changes of the system in the...Ch. 4 - Discuss the entropy changes in the systems of...Ch. 4 - A tank contains 111.0 g chlorine gas l2), which is...Ch. 4 - A mole of ideal monatomic gas at 0 and 1.00 atm...Ch. 4 - A mole of an ideal gas at pressure 4.00 atm and...Ch. 4 - After a free expansion to quadruple its volume, a...Ch. 4 - An engine is found to have an efficiency of 0.40....Ch. 4 - In performing 100.0 J of work, an engine...Ch. 4 - An engine with an efficiency of 0.30 absorbs 500 J...Ch. 4 - It is found that an engine discharges 100.0 J...Ch. 4 - The temperature of the cold reservoir of the...Ch. 4 - An engine absorbs three times as much heat as it...Ch. 4 - A coal power plant consumes 100,000 kg of coal per...Ch. 4 - A refrigerator has a coefficient of performance of...Ch. 4 - During one cycle, a refrigerator removes 500 J...Ch. 4 - If a refrigerator discards 80 J of heat per cycle...Ch. 4 - A refrigerator has a coefficient of performance of...Ch. 4 - The temperature of the cold and hot reservoirs...Ch. 4 - Suppose a Carnot refrigerator operates between Tc...Ch. 4 - A Carnot engine operates between reservoirs at 600...Ch. 4 - A 500-W motor operates a Carnot refrigerator...Ch. 4 - Sketch a Carnot cycle on a temperature-volume...Ch. 4 - A Carnot heat pump operates between 0 and 20 ....Ch. 4 - An engine between heat reservoirs at 20 and 200 ...Ch. 4 - Suppose a Carnot engine can be operated between...Ch. 4 - A Carnot engine is used to measure the temperature...Ch. 4 - What is the minimum work required of a...Ch. 4 - Two hundred joules of heat are removed from a heat...Ch. 4 - In an isothermal reversible expansion at 27 , an...Ch. 4 - An ideal gas at 300 K is compressed isothermally...Ch. 4 - What is the entropy change of 10 g of steam at 100...Ch. 4 - A metal is used to conduct heat between two...Ch. 4 - For the Carnot cycle of Figure 4.12, what is the...Ch. 4 - A 5.0-kg piece of lead at a temperature of 600 is...Ch. 4 - One mole of an ideal gas doubles its volume in a...Ch. 4 - One mole of an ideal monatomic gas is confined to...Ch. 4 - (a) A 5.0-kg rock at a temperature of 20 is...Ch. 4 - A copper rod of cross-sectional area 5.0 cm2 and...Ch. 4 - Fifty grams of water at 20 is heated until it...Ch. 4 - Fifty grams of water at 0 are changed into vapor...Ch. 4 - In an isochoric process, heat is added to 10 mol...Ch. 4 - Two hundred grams of water at 0 is brought into...Ch. 4 - Suppose that the temperature of the water in the...Ch. 4 - Two hundred grams of water at 0 is brought into...Ch. 4 - (a) Ten grams of H2O stats as ice at 0 . The ice...Ch. 4 - The Carnot cycle is represented by the...Ch. 4 - A Carnot engine operating between heat reservoirs...Ch. 4 - A monoatomic ideal gas (n moles) goes through a...Ch. 4 - A Carnot engine has an efficiency of 0.60. When...Ch. 4 - A Carnot engine performs 100 J of work while...Ch. 4 - A Carnot refrigerator exhausts heat to the air,...Ch. 4 - A 300-W heat pump operates between the ground,...Ch. 4 - An engineer must design a refrigerator that does...Ch. 4 - A Carnot engine employs 1.5 mol of nitrogen gas as...Ch. 4 - A 5.0-kg wood block starts with an initial speed...Ch. 4 - A system consisting of 20.0 mol of a monoatomic...Ch. 4 - A glass beaker of mass 400 g contains 500 g of...Ch. 4 - A Carnot engine operates between 550 and 20 ...Ch. 4 - An ideal gas at temperature T is stored in the...Ch. 4 - A 0.50-kg piece of aluminum at 250 is dropped...Ch. 4 - Suppose 20 g of ice at 0 is added to 300 g of...Ch. 4 - A heat engine operates between two temperatures...Ch. 4 - A thermal engine produces 4 MJ of electrical...Ch. 4 - A coal power plant consumes 100,000 kg of coal per...Ch. 4 - A Carnot engine operates in a Carnot cycle between...Ch. 4 - A Carnot engine working between two heat baths of...Ch. 4 - A Carnot cycle working between 100 and 30 is...Ch. 4 - (a) infinitesimal amount of heat is added...Ch. 4 - Using the result of the preceding problem, show...Ch. 4 - With the help of the two preceding problems, show...Ch. 4 - A cylinder contains 500 g of helium at 120 atm and...Ch. 4 - A diatomic ideal gas is brought from an initial...Ch. 4 - The gasoline internal combustion engine operates...Ch. 4 - An ideal diesel cycle is shown below. This cycle...Ch. 4 - Consider an ideal gas Joule cycle, also called the...Ch. 4 - Derive a formula for the coefficient of...Ch. 4 - Two moles of nitrogen gas, with =7/5 for ideal...Ch. 4 - A Carnot refrigerator, working between 0 and 30 ...
Additional Science Textbook Solutions
Find more solutions based on key concepts
15. A good scientific hypothesis is based on existing evidence and leads to testable predictions. What hypothes...
Campbell Biology: Concepts & Connections (9th Edition)
How Would the experiments result charge if oxygen (O2) were induced in the spark chamber?
Biology: Life on Earth with Physiology (11th Edition)
What are the two types of bone marrow, and what are their functions?
Human Anatomy & Physiology (2nd Edition)
17. Passenger Balloons
Long-distance balloon flights are usually made using a hot-air- balloon/helium-balloon h...
College Physics: A Strategic Approach (3rd Edition)
Choose the best answer to each of the following. Explain your reasoning. Where are most to the Milky Ways globu...
Cosmic Perspective Fundamentals
Give a molecular orbital description for each of the following: a. 1,3-pentadiene b. 1,4-pentadiene c. 1,3,5-he...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Q: What is the direction of the magnetic field at point A, due to the current I in a wire, in each of the cases 1 to 6 shown below? Note: point A is in the plane of the page. ▪A I I ▪A (1) (2) ▪A • I (out of page) (3) ▪A I x I (into page) ▪A ▪A I (4) (5) (6)arrow_forwardA tennis ball is thrown into the air with initial speed vo=46 m/s and angle (theta) 38 degrees from the ground. Find the distance it travels (x) when it hits the ground.arrow_forwardProblem 04.08 (17 points). Answer the following questions related to the figure below. ථි R₁ www R₂ E R₁ www ли R₁ A Use Kirchhoff's laws to calculate the currents through each battery and resistor in terms of R1, R2, E1, & E2. B Given that all the resistances and EMFs have positive values, if E₁ > E2 and R₁ > R2, which direction is the current flowing through E₁? Through R₂? C If E1 E2 and R₁ > R2, which direction is the current flowing through E₁? Through R2?arrow_forward
- A 105- and a 45.0-Q resistor are connected in parallel. When this combination is connected across a battery, the current delivered by the battery is 0.268 A. When the 45.0-resistor is disconnected, the current from the battery drops to 0.0840 A. Determine (a) the emf and (b) the internal resistance of the battery. 10 R2 R₁ ww R₁ Emf 14 Emf Final circuit Initial circuitarrow_forwardA ball is shot at an angle of 60° with the ground. What should be the initial velocity of the ball so that it will go inside the ring 8 meters away and 3 meters high. Suppose that you want the ball to be scored exactly at the buzzer, determine the required time to throw and shoot the ball. Full solution and figure if there is.arrow_forwardCorrect answer please. I will upvote.arrow_forward
- Define operational amplifierarrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward9 V 300 Ω www 100 Ω 200 Ω www 400 Ω 500 Ω www 600 Ω ww 700 Ω Figure 1: Circuit symbols for a variety of useful circuit elements Problem 04.07 (17 points). Answer the following questions related to the figure below. A What is the equivalent resistance of the network of resistors in the circuit below? B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance is zero), how much current flows through it in this circuit? C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger or smaller? By how much? D In the ideal battery case, calculate the current through and the voltage across each resistor in the circuit.arrow_forward
- helparrow_forwardIf the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)arrow_forwardTruck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College


An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY