
University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 46P
What is the entropy change of 10 g of steam at 100 ℃ when it condenses to water at the same temperature?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
No chatgpt pls will upvote
SARET CRKS AUTOWAY
12. A stone is dropped from the top of a cliff. It is seen to hit the ground below
after 3.55 s. How high is the cliff?
13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming
no air resistance, what is the speed of the ball just before it strikes the ground?
14. Estimate (a) how long it took King Kong to fall straight down from the top
of the Empire State Building (280m high), and (b) his velocity just before
"landing".
Useful equations
For Constant Velocity:
V =>
D
X = V₁t + Xo
For Constant Acceleration:
Vr = V + at
X = Xo+Vot +
v=V+2a(X-Xo)
\prom = V +V
V velocity
t = time
D Distance
X = Final Position
Xo Initial Position
V = Final Velocity
Vo Initial Velocity
a = acceleration
For free fall
Yf
= Final Position
Yo Initial Position
g = 9.80
m
$2
For free fall:
V = V + gt
Y=Yo+Vo t +
+gt
V,² = V₁²+2g (Y-Yo)
V+Vo
Vprom=
2
6
Solve the problems
Chapter 4 Solutions
University Physics Volume 2
Ch. 4 - Check Your Understanding What is the efficiency of...Ch. 4 - Check your Understanding Show that QhQh=QcQc for...Ch. 4 - Check Your Understanding A Carnot engine operates...Ch. 4 - Check Your Understanding A Carnot refrigerator...Ch. 4 - Check Your Understanding In Example 4.7, the...Ch. 4 - Check Your Understanding A quantity of heat Q is...Ch. 4 - Check Your Understanding A 50-g copper piece at a...Ch. 4 - State an example of a process that occurs in...Ch. 4 - Explain in practical terms why efficiency is...Ch. 4 - If the refrigerator door is left what happens to...
Ch. 4 - Is it possible for the efficiency of a reversible...Ch. 4 - In the text, we showed that if the Clausius...Ch. 4 - Why don't we operate ocean liners by extracting...Ch. 4 - Discuss the practical advantages and disadvantages...Ch. 4 - The energy output of a heat pump is greater than...Ch. 4 - Speculate as to why nuclear power plants are less...Ch. 4 - An ideal gas goes from state (pi,vi,) to state...Ch. 4 - To increase the efficiency of a Carnot engine,...Ch. 4 - How could you design a Carnot engine with 100%...Ch. 4 - What type of processes occur in a Carnot cycle?Ch. 4 - Does the entropy increase for a Carnot engine for...Ch. 4 - Is it possible for a system to have an entropy...Ch. 4 - Are the entropy changes of the system in the...Ch. 4 - Discuss the entropy changes in the systems of...Ch. 4 - A tank contains 111.0 g chlorine gas l2), which is...Ch. 4 - A mole of ideal monatomic gas at 0 and 1.00 atm...Ch. 4 - A mole of an ideal gas at pressure 4.00 atm and...Ch. 4 - After a free expansion to quadruple its volume, a...Ch. 4 - An engine is found to have an efficiency of 0.40....Ch. 4 - In performing 100.0 J of work, an engine...Ch. 4 - An engine with an efficiency of 0.30 absorbs 500 J...Ch. 4 - It is found that an engine discharges 100.0 J...Ch. 4 - The temperature of the cold reservoir of the...Ch. 4 - An engine absorbs three times as much heat as it...Ch. 4 - A coal power plant consumes 100,000 kg of coal per...Ch. 4 - A refrigerator has a coefficient of performance of...Ch. 4 - During one cycle, a refrigerator removes 500 J...Ch. 4 - If a refrigerator discards 80 J of heat per cycle...Ch. 4 - A refrigerator has a coefficient of performance of...Ch. 4 - The temperature of the cold and hot reservoirs...Ch. 4 - Suppose a Carnot refrigerator operates between Tc...Ch. 4 - A Carnot engine operates between reservoirs at 600...Ch. 4 - A 500-W motor operates a Carnot refrigerator...Ch. 4 - Sketch a Carnot cycle on a temperature-volume...Ch. 4 - A Carnot heat pump operates between 0 and 20 ....Ch. 4 - An engine between heat reservoirs at 20 and 200 ...Ch. 4 - Suppose a Carnot engine can be operated between...Ch. 4 - A Carnot engine is used to measure the temperature...Ch. 4 - What is the minimum work required of a...Ch. 4 - Two hundred joules of heat are removed from a heat...Ch. 4 - In an isothermal reversible expansion at 27 , an...Ch. 4 - An ideal gas at 300 K is compressed isothermally...Ch. 4 - What is the entropy change of 10 g of steam at 100...Ch. 4 - A metal is used to conduct heat between two...Ch. 4 - For the Carnot cycle of Figure 4.12, what is the...Ch. 4 - A 5.0-kg piece of lead at a temperature of 600 is...Ch. 4 - One mole of an ideal gas doubles its volume in a...Ch. 4 - One mole of an ideal monatomic gas is confined to...Ch. 4 - (a) A 5.0-kg rock at a temperature of 20 is...Ch. 4 - A copper rod of cross-sectional area 5.0 cm2 and...Ch. 4 - Fifty grams of water at 20 is heated until it...Ch. 4 - Fifty grams of water at 0 are changed into vapor...Ch. 4 - In an isochoric process, heat is added to 10 mol...Ch. 4 - Two hundred grams of water at 0 is brought into...Ch. 4 - Suppose that the temperature of the water in the...Ch. 4 - Two hundred grams of water at 0 is brought into...Ch. 4 - (a) Ten grams of H2O stats as ice at 0 . The ice...Ch. 4 - The Carnot cycle is represented by the...Ch. 4 - A Carnot engine operating between heat reservoirs...Ch. 4 - A monoatomic ideal gas (n moles) goes through a...Ch. 4 - A Carnot engine has an efficiency of 0.60. When...Ch. 4 - A Carnot engine performs 100 J of work while...Ch. 4 - A Carnot refrigerator exhausts heat to the air,...Ch. 4 - A 300-W heat pump operates between the ground,...Ch. 4 - An engineer must design a refrigerator that does...Ch. 4 - A Carnot engine employs 1.5 mol of nitrogen gas as...Ch. 4 - A 5.0-kg wood block starts with an initial speed...Ch. 4 - A system consisting of 20.0 mol of a monoatomic...Ch. 4 - A glass beaker of mass 400 g contains 500 g of...Ch. 4 - A Carnot engine operates between 550 and 20 ...Ch. 4 - An ideal gas at temperature T is stored in the...Ch. 4 - A 0.50-kg piece of aluminum at 250 is dropped...Ch. 4 - Suppose 20 g of ice at 0 is added to 300 g of...Ch. 4 - A heat engine operates between two temperatures...Ch. 4 - A thermal engine produces 4 MJ of electrical...Ch. 4 - A coal power plant consumes 100,000 kg of coal per...Ch. 4 - A Carnot engine operates in a Carnot cycle between...Ch. 4 - A Carnot engine working between two heat baths of...Ch. 4 - A Carnot cycle working between 100 and 30 is...Ch. 4 - (a) infinitesimal amount of heat is added...Ch. 4 - Using the result of the preceding problem, show...Ch. 4 - With the help of the two preceding problems, show...Ch. 4 - A cylinder contains 500 g of helium at 120 atm and...Ch. 4 - A diatomic ideal gas is brought from an initial...Ch. 4 - The gasoline internal combustion engine operates...Ch. 4 - An ideal diesel cycle is shown below. This cycle...Ch. 4 - Consider an ideal gas Joule cycle, also called the...Ch. 4 - Derive a formula for the coefficient of...Ch. 4 - Two moles of nitrogen gas, with =7/5 for ideal...Ch. 4 - A Carnot refrigerator, working between 0 and 30 ...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
MAKE CONNECTIONS The gene that causes sickle-cell disease is present in a higher percentage of residents of su...
Campbell Biology (11th Edition)
How do food chains and food webs differ? Which is the more accurate representation of feeding relationships in ...
Biology: Life on Earth (11th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Explain all answers clearly, using complete sentences and proper essay structure if needed. An asterisk (*) des...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 11 kg weight is attached to a spring with constant k = 99 N/m and subjected to an external force F(t) =-704 sin(5t). The weight is initially displaced 4 meters above equilibrium and given an upward velocity of 5 m/s. Find its displacement for t> 0. y(t) וןarrow_forward7. A race car accelerates from rest to 55 m s-1 in 5.0 seconds. The acceleration of the car Is m s-² 8. An object's speed increases uniformly from 10.5 km per hour to 99.8 km per hour in 2.41 seconds. Calculate the acceleration in m s-2 and express your answer to three significant figures. 9. The acceleration-time graph of a car is shown below. The initial speed of the car is 5.0 m s-1. # Acceleration (ms) 12 8.0- 4.0- 2.0 4.0 6.0 Time (s) Calculate the velocity of the car at t = 4.0 s. 3arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardProblem Seven. A football receiver running straight downfield at 5.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at an angle of 35.0° horizon. above the 8.) If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the distance between the quarterback and the receiver when the catch is made. (A) 21.3 (B) 17.8 (C) 18.8 (D) 19.9 (E) 67.5arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Please solve and answer the question correctly please. Thank you!!arrow_forwardPlease view both photos, and answer the question correctly please. Thank you!!arrow_forwardA thrown brick hits a window, but doesn't break it. Instead it reverses direction and ends down on the ground below the window. Since the brick didn't break the glass, we know: О The force of the brick on the glass > the force of the glass on the brick. О The force of the brick on the glass the force of the glass on the brick. = О The force of the brick on the glass < the force of the glass on the brick. О The brick didn't slow down as it broke the glass.arrow_forward
- Alexandra (wearing rubber boots for traction) is attempting to drag her 32.6-kg Golden Retriever across the smooth ice by applying a horizontal force. What force must she apply to move the dog with a constant speed of 0.950 m/s? ☐ 31.0 lb. ☐ 319 kg. ○ Zero. 32.6 kg.arrow_forwardThe figure shows a graph of the acceleration of an object as a function of the net force acting on it. The mass of this object, in grams, is closest to 11 a(m/s²) 8.0+ 6.0- 4.0- 2.0- 0+ F(N) 0.00 0.50 1.00 ☐ 130 ○ 8000 ☐ 89arrow_forwardValues that are within standard deviations represent measurements that are considered to be near the true value. Review the data from the lab and determine whether your data is within standard deviations. Report, using numerical values, whether your data for each angle is within standard deviations. An acceptable margin of error typically falls between 4% and 8% at the 95% confidence level. Review your data for each angle to determine whether the margin of error is within an acceptable range. Report with numerical values, whether your data for each angle is within an acceptable margin of error. Can you help explain what my data means in terms of the standard deviation and the ME? Thanks!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College


College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY