Practical Management Science
5th Edition
ISBN: 9781305734845
Author: WINSTON
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 52P
Summary Introduction
To determine: The way Person E can maximize the profit earned on the investments.
Linear programming:
It is a mathematical modeling procedure where a linear function is maximized or minimized subject to certain constraints. This method is widely useful in making a quantitative analysis which is essential for making important business decisions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ginger owns a property worth $500,000. She owes $220,000
on her mortgage. How much equity does she have in the
property?
44%
82%
56%
27%
Lorna owns a home that is worth $385,000. She has a
mortgage with a balance of $112,000. Calculate her equity in
the home.
$497,000
$76,000
$273,000
$245,000
money borrowed for personal reasons; to be repaid within
a specific time frame and with added interest
money borrowed for the purchase of real estate; to be
repaid within a specific time frame and with added interest
money borrowed for business reasons; to be repaid within
a specific time frame and with added interest
money borrowed for the purchase of a vehicle; to be
repaid within a specific time frame and with added interest
: Business Loan
:: Auto Loan
:: Mortgage Loan
:: Personal Loan
1
4
6.
8.
9.
Finish
Si
Chapter 4 Solutions
Practical Management Science
Ch. 4.2 - Prob. 1PCh. 4.2 - Prob. 2PCh. 4.2 - Prob. 3PCh. 4.2 - Prob. 4PCh. 4.2 - Prob. 5PCh. 4.2 - Prob. 6PCh. 4.3 - Prob. 7PCh. 4.3 - Prob. 8PCh. 4.3 - Prob. 9PCh. 4.3 - Prob. 10P
Ch. 4.3 - Prob. 11PCh. 4.3 - Prob. 12PCh. 4.4 - Prob. 13PCh. 4.4 - Prob. 14PCh. 4.4 - Prob. 15PCh. 4.4 - Prob. 16PCh. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - Prob. 19PCh. 4.5 - Prob. 20PCh. 4.5 - Prob. 21PCh. 4.5 - Prob. 22PCh. 4.5 - Prob. 23PCh. 4.5 - Prob. 24PCh. 4.5 - Prob. 25PCh. 4.6 - Prob. 26PCh. 4.6 - Prob. 27PCh. 4.6 - Prob. 28PCh. 4.6 - Prob. 29PCh. 4.7 - Prob. 30PCh. 4.7 - Prob. 31PCh. 4.7 - Prob. 32PCh. 4.7 - Prob. 33PCh. 4.7 - Prob. 34PCh. 4.7 - Prob. 35PCh. 4.7 - Prob. 36PCh. 4.7 - Prob. 37PCh. 4.7 - Prob. 38PCh. 4.7 - Prob. 39PCh. 4.7 - Prob. 40PCh. 4.8 - Prob. 41PCh. 4.8 - Prob. 42PCh. 4.8 - Prob. 43PCh. 4.8 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98PCh. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - Prob. 102PCh. 4 - Prob. 103PCh. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - Prob. 106PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - Prob. 132PCh. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- In the financial world, there are many types of complex instruments called derivatives that derive their value from the value of an underlying asset. Consider the following simple derivative. A stocks current price is 80 per share. You purchase a derivative whose value to you becomes known a month from now. Specifically, let P be the price of the stock in a month. If P is between 75 and 85, the derivative is worth nothing to you. If P is less than 75, the derivative results in a loss of 100(75-P) dollars to you. (The factor of 100 is because many derivatives involve 100 shares.) If P is greater than 85, the derivative results in a gain of 100(P-85) dollars to you. Assume that the distribution of the change in the stock price from now to a month from now is normally distributed with mean 1 and standard deviation 8. Let EMV be the expected gain/loss from this derivative. It is a weighted average of all the possible losses and gains, weighted by their likelihoods. (Of course, any loss should be expressed as a negative number. For example, a loss of 1500 should be expressed as -1500.) Unfortunately, this is a difficult probability calculation, but EMV can be estimated by an @RISK simulation. Perform this simulation with at least 1000 iterations. What is your best estimate of EMV?arrow_forwardBased on Kelly (1956). You currently have 100. Each week you can invest any amount of money you currently have in a risky investment. With probability 0.4, the amount you invest is tripled (e.g., if you invest 100, you increase your asset position by 300), and, with probability 0.6, the amount you invest is lost. Consider the following investment strategies: Each week, invest 10% of your money. Each week, invest 30% of your money. Each week, invest 50% of your money. Use @RISK to simulate 100 weeks of each strategy 1000 times. Which strategy appears to be best in terms of the maximum growth rate? (In general, if you can multiply your investment by M with probability p and lose your investment with probability q = 1 p, you should invest a fraction [p(M 1) q]/(M 1) of your money each week. This strategy maximizes the expected growth rate of your fortune and is known as the Kelly criterion.) (Hint: If an initial wealth of I dollars grows to F dollars in 100 weeks, the weekly growth rate, labeled r, satisfies F = (I + r)100, so that r = (F/I)1/100 1.)arrow_forward9) Today is your 20th birthday. Your parents just gave you $5,000 that you plan to use to open a stock brokerage account. Your plan is to add $500 to the account each year on your birthday. Your first $500 contribution will come one year from now on your 21st birthday. Your 45th and final $500 contribution will occur on your 65th birthday. You plan to withdraw $5,000 from the account five years from now on your 25th birthday to take a trip to Europe. You also anticipate that you will need to withdraw $10,000 from the account 10 years from now on your 30th birthday to take a trip to Asia. You expect that the account will have an average annual return of 12 percent. How much money do you anticipate that you will have in the account on your 65th birthday, following your final contribution?arrow_forward
- A few years ago, Michael purchased a home for $394,000. Today, the home is worth $520,000. His remaining mortgage balance is $166,000. Assuming Michael can borrow up to 80 percent of the market value of his home, what is the maximum amount he can borrow?arrow_forwardAt age 25, Anthony establishes an Individual Retirement Account (IRA). If he invests P10,000 per year for 30 years in an ordinary annuity, the account earns 7.75% per year, how much will he have in the account at age 55?arrow_forwardYou have recently won the super jackpot in the WashingtonState Lottery. On reading the fine print, you discover that you have the following twooptions:a. You will receive 31 annual payments of $250,000, with the first payment beingdelivered today. The income will be taxed at a rate of 28 percent. Taxes will bewithheld when the checks are issued.b. You will receive $530,000 now, and you will not have to pay taxes on this amount.In addition, beginning one year from today, you will receive $200,000 each yearfor 30 years. The cash flows from this annuity will be taxed at 28 percent.Using a discount rate of 7 percent, which option should you select?arrow_forward
- I need 3 answersarrow_forwardThe Free Cash Flow model has the following advantage over the Dividend Growth model: In the case of variable growth, it does not require the calculation of any horizon value. It can be applied even if growth rates are unknown. It can be applied to companies with variable growth in the initial years that eventually settle down to a fixed rate of growth for the long term. It can be applied to divisions of companies. O It does not require any forecasting.arrow_forwardAn analyst has collected the following information regarding Gilligan Grocers: Earnings before interest and taxes (EBIT) = $700 million. Earnings before interest, taxes, depreciation and amortization (EBITDA) = $850 million. Interest expense = $200 million. The corporate tax rate is 40 percent. Depreciation is the company’s only non-cash expense or revenue.What is the company’s net cash flow?arrow_forward
- Consider a project with the following cash flows: year 1, 2$400; year 2, $200; year 3, $600; year 4, 2$900; year 5, $1000; year 6, $250; year 7, $230. Assume a discount rate of 15% per year.a. Find the project’s NPV if cash flows occur at the ends of the respective years.b. Find the project’s NPV if cash flows occur at the beginnings of the respective years.c. Find the project’s NPV if cash flows occur at the middles of the respective years.arrow_forwardThe CEO of Coral Gables Corp. was reviewing the returns of the company's sizeable investment portfolio in the last five years during a period of extreme volatility. He noted the 5 year sequence of investment returns as follows: +30%, -20%, +30%, -20%, +30%. He then calculated the arithmetic average return, but his CFO noted that since he had ignored the compounding effect he was wrong. By how much was he wrong? (Hint: Calculate the annual arithmetic average return over the five years less the average geometric (compounded) return.) (Round intermediate calculation to 2 decimal places, e.g. 52.75.) O 1.59% O 3.25% ○ 2.95% ○ 9.39%arrow_forwardMichelle, age 45, currently makes $95,000. Her wage replacement ratio is determined to be 75 percent. She expects that inflation will average 3 percent for her entire life expectancy. She expects to earn 8 percent on her investments and retire at age 65, possibly living to age 95. She has sent for and received her Social Security benefit statement, which indicated that her Social Security retirement benefit in today’s dollars adjusted for early retirement is $20,000 per year. How much capital does Jordan need to retire at age 65?.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,