Practical Management Science
5th Edition
ISBN: 9781305734845
Author: WINSTON
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 64P
Summary Introduction
To determine: The way the company can maximize the profit.
Linear programming:
It is a mathematical modeling procedure where a linear function is maximized or minimized subject to certain constraints. This method is widely useful in making a quantitative analysis which is essential for making important business decisions.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Barbara Flynn sells papers at a newspaper stand for $0.40. The papers cost her $0.30, giving her a $0.10 profit on each one she sells. From past experience Barbara
knows that:
a) 20% of the time she sells 150 papers.
b) 20% of the time she sells 200 papers.
c) 30% of the time she sells 250 papers.
d) 30% of the time she sells 300 papers.
Assuming that Barbara believes the cost of a lost sale to be $0.05 and any unsold papers cost her $0.30 and she orders 250 papers.
Use the following random numbers: 14, 4, 13, 9, and 25 for simulating Barbara's profit. (Note: Assume the random number interval begins at 01 and ends at 00.)
Based on the given probability distribution and the order size, for the given random number Barbara's sales and profit are (enter your responses for sales as integers
and round all profit responses to two decimal places):
Random Number
Sales
Profit
14
4
13
9
25
Three methods can be used for producing heat sensors for high-temperature furnaces. Method A will have a fixed cost of $140,000 per year and a production cost of $62 per part. Method B will have a fixed cost of $210,000 per year and a production cost of $28 per part. Method C will require the purchase of equipment costing $500,000. It will have a life of five years and a 25% of first cost salvage value. The production cost will be $53 per part. At an interest rate of 10% per year, determine the breakeven annual production rate between the two lowest cost methods.
A company owns a 5-year-old turret lathe that has a book value of $23,000. The present market value for the lathe is $18,000. The expected decline in market value is $1,700/year to a minimum market value of $4,080; maintenance plus operating costs for the lathe equal $4,470/year.A new turret lathe can be purchased for $46,000 and will have an expected life of 8 years. The market value for the turret lathe is expected to equal $46,000(0.70)k at the end of year k. Annual maintenance and operating cost is expected to equal $1,900. Based on a 12% MARR, should the old lathe be replaced now? Use an equivalent uniform annual cost comparison, a planning horizon of 7 years, and the cash flow approach.EUAC for keeping old turret lathe: $EUAC for replacing turret lathe: $
Chapter 4 Solutions
Practical Management Science
Ch. 4.2 - Prob. 1PCh. 4.2 - Prob. 2PCh. 4.2 - Prob. 3PCh. 4.2 - Prob. 4PCh. 4.2 - Prob. 5PCh. 4.2 - Prob. 6PCh. 4.3 - Prob. 7PCh. 4.3 - Prob. 8PCh. 4.3 - Prob. 9PCh. 4.3 - Prob. 10P
Ch. 4.3 - Prob. 11PCh. 4.3 - Prob. 12PCh. 4.4 - Prob. 13PCh. 4.4 - Prob. 14PCh. 4.4 - Prob. 15PCh. 4.4 - Prob. 16PCh. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - Prob. 19PCh. 4.5 - Prob. 20PCh. 4.5 - Prob. 21PCh. 4.5 - Prob. 22PCh. 4.5 - Prob. 23PCh. 4.5 - Prob. 24PCh. 4.5 - Prob. 25PCh. 4.6 - Prob. 26PCh. 4.6 - Prob. 27PCh. 4.6 - Prob. 28PCh. 4.6 - Prob. 29PCh. 4.7 - Prob. 30PCh. 4.7 - Prob. 31PCh. 4.7 - Prob. 32PCh. 4.7 - Prob. 33PCh. 4.7 - Prob. 34PCh. 4.7 - Prob. 35PCh. 4.7 - Prob. 36PCh. 4.7 - Prob. 37PCh. 4.7 - Prob. 38PCh. 4.7 - Prob. 39PCh. 4.7 - Prob. 40PCh. 4.8 - Prob. 41PCh. 4.8 - Prob. 42PCh. 4.8 - Prob. 43PCh. 4.8 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98PCh. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - Prob. 102PCh. 4 - Prob. 103PCh. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - Prob. 106PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - Prob. 132PCh. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- In this version of dice blackjack, you toss a single die repeatedly and add up the sum of your dice tosses. Your goal is to come as close as possible to a total of 7 without going over. You may stop at any time. If your total is 8 or more, you lose. If your total is 7 or less, the house then tosses the die repeatedly. The house stops as soon as its total is 4 or more. If the house totals 8 or more, you win. Otherwise, the higher total wins. If there is a tie, the house wins. Consider the following strategies: Keep tossing until your total is 3 or more. Keep tossing until your total is 4 or more. Keep tossing until your total is 5 or more. Keep tossing until your total is 6 or more. Keep tossing until your total is 7 or more. For example, suppose you keep tossing until your total is 4 or more. Here are some examples of how the game might go: You toss a 2 and then a 3 and stop for total of 5. The house tosses a 3 and then a 2. You lose because a tie goes to the house. You toss a 3 and then a 6. You lose. You toss a 6 and stop. The house tosses a 3 and then a 2. You win. You toss a 3 and then a 4 for total of 7. The house tosses a 3 and then a 5. You win. Note that only 4 tosses need to be generated for the house, but more tosses might need to be generated for you, depending on your strategy. Develop a simulation and run it for at least 1000 iterations for each of the strategies listed previously. For each strategy, what are the two values so that you are 95% sure that your probability of winning is between these two values? Which of the five strategies appears to be best?arrow_forwardIt costs a pharmaceutical company 75,000 to produce a 1000-pound batch of a drug. The average yield from a batch is unknown but the best case is 90% yield (that is, 900 pounds of good drug will be produced), the most likely case is 85% yield, and the worst case is 70% yield. The annual demand for the drug is unknown, with the best case being 20,000 pounds, the most likely case 17,500 pounds, and the worst case 10,000 pounds. The drug sells for 125 per pound and leftover amounts of the drug can be sold for 30 per pound. To maximize annual expected profit, how many batches of the drug should the company produce? You can assume that it will produce the batches only once, before demand for the drug is known.arrow_forwardAt the beginning of each week, a machine is in one of four conditions: 1 = excellent; 2 = good; 3 = average; 4 = bad. The weekly revenue earned by a machine in state 1, 2, 3, or 4 is 100, 90, 50, or 10, respectively. After observing the condition of the machine at the beginning of the week, the company has the option, for a cost of 200, of instantaneously replacing the machine with an excellent machine. The quality of the machine deteriorates over time, as shown in the file P10 41.xlsx. Four maintenance policies are under consideration: Policy 1: Never replace a machine. Policy 2: Immediately replace a bad machine. Policy 3: Immediately replace a bad or average machine. Policy 4: Immediately replace a bad, average, or good machine. Simulate each of these policies for 50 weeks (using at least 250 iterations each) to determine the policy that maximizes expected weekly profit. Assume that the machine at the beginning of week 1 is excellent.arrow_forward
- The Tinkan Company produces one-pound cans for the Canadian salmon industry. Each year the salmon spawn during a 24-hour period and must be canned immediately. Tinkan has the following agreement with the salmon industry. The company can deliver as many cans as it chooses. Then the salmon are caught. For each can by which Tinkan falls short of the salmon industrys needs, the company pays the industry a 2 penalty. Cans cost Tinkan 1 to produce and are sold by Tinkan for 2 per can. If any cans are left over, they are returned to Tinkan and the company reimburses the industry 2 for each extra can. These extra cans are put in storage for next year. Each year a can is held in storage, a carrying cost equal to 20% of the cans production cost is incurred. It is well known that the number of salmon harvested during a year is strongly related to the number of salmon harvested the previous year. In fact, using past data, Tinkan estimates that the harvest size in year t, Ht (measured in the number of cans required), is related to the harvest size in the previous year, Ht1, by the equation Ht = Ht1et where et is normally distributed with mean 1.02 and standard deviation 0.10. Tinkan plans to use the following production strategy. For some value of x, it produces enough cans at the beginning of year t to bring its inventory up to x+Ht, where Ht is the predicted harvest size in year t. Then it delivers these cans to the salmon industry. For example, if it uses x = 100,000, the predicted harvest size is 500,000 cans, and 80,000 cans are already in inventory, then Tinkan produces and delivers 520,000 cans. Given that the harvest size for the previous year was 550,000 cans, use simulation to help Tinkan develop a production strategy that maximizes its expected profit over the next 20 years. Assume that the company begins year 1 with an initial inventory of 300,000 cans.arrow_forwardAn airline company has been contracting a maintenance company to do overhauls for its planes at a cost of $51275 per plane per quarter. The airline company estimates that by building a $1461838 maintenance facility with a life of 5 years and a residual market value of $770217 at the end of its life, they could handle their own overhaul at a cost of only $42020 per plane per quarter. What is the minimum number of planes they must operate to make it just profitable to build this facility? (=2% per quarter). • 25 O 31 Clear my choicearrow_forwardThere is an upstream Picking department that feeds two downstream Packing departments: Pack Singles and Pack Multis. Those Packing departments feed to a Shipping department that loads the outgoing trucks. 40% of your Pick volume goes to Pack Singles and has a packing rate of 104 units per labor hour (uph). 60% of the Pick volume goes to Pack Multis and has a pack rate of 215 units per labor hour. Your pickers pick both Single and Multi items throughout the day at an overall average rate of 114 units per labor hour. All units that are packed in both processes go through the Ship process at a rate of 570 units per hour. You have 102 people today for all 4 departments and you absolutely must pack 47,880 units in Pack Multis Items to meet a customer promise metric. How do you allocate labor to balance the flow in your department if you work a 10 hour shift? Do not assume breaks or lunches in your answer. Redirect 1: You now need to process all of the Pack Singles Volume in the first 5…arrow_forward
- If the Poisson's ratio of an elastic material is 0.4, then find the ratio of modulus of rigidity to Young's modulus..If the Poisson's ratio of an elastic material is 0.4, then find the ratio of modulus of rigidity to Young's Modulus If the Poisson's ratio of an elastic material is 0.4, then find the ratio of modulus of rigidity to Young's modulus...?arrow_forwardWhich of the following statements is correct regarding the EMH form? Select one: None of the answers are correct If the market is weak-form efficient, then it is also semistrong and strong-form efficient. If the market is semistrong form efficient, then it is also strong form efficient If a market is strong-form efficient, it is also semistrong and weak form efficient If the market is strong-form efficient, it is also semistrong but not weak-form efficientarrow_forwardWilliams Auto has a machine that installs tires. The machine is now in need of repair. The machineoriginally cost $10,000 and the repair will cost $1,000, but the machine will then last two years.The labor cost of operating the machine is $0.50 per tire. Instead of repairing the old machine,Williams could buy a new machine at a cost of $5,000 that would also last two years; the labor costwould then be reduced to $0.25 per tire. Should Williams repair or replace the machine if it expectsto install 10,000 tires in the next two years?arrow_forward
- A utility function is a value function, and a value function is always a utility function?arrow_forward. A group of students organizes a bake sale in which they sell hundreds of cookies at $1per piece. They set up a table on campus and wait for students to come and purchasetheir cookies. Consider the following variables in this bake sale operation:1. Size of the cookies2. Weather conditions on campus3. Organization of the table4. Number of cookies sold5. Competition from other fund-raisers coinciding on campus6. Amount of advertising and shouting of the students at the bake sale table7. Number of students on campus that dayWhich of these variables is an output variable?a. 3b. 4c. 5d. None of the abovearrow_forwardSubject:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,