Practical Management Science
5th Edition
ISBN: 9781305734845
Author: WINSTON
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 125P
Summary Introduction
To determine: The way to minimize the cost of meeting the daily police requirements.
Linear programming:
It is a mathematical modeling procedure where a linear function is maximized or minimized subject to certain constraints. This method is widely useful in making a quantitative analysis which is essential for making important business decisions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A company has one machine which can be used to make product Alpha and product Beta.
Each unit of product Alpha requires 45 minutes of machine time, while
each unit of product Beta requires 37 minutes of machine time.
The machine can be used for 8 hours per day and 5 days per week.
Next week the company will produce 23 units of product Alpha.
After completing the production of Alpha, the company will produce product Beta.
How many units of product Beta can be produced next week?
Use at least 4 decimals.You must showm your calculation steps and brief explanation on your Excel spreadsheets.
Please answer question completely and explain your answer
A large food chain owns a number of pharmacies that operate in a variety of settings. Some are situated in small towns and are open for only 8 hours a day, 5 days per week. Others are located in shopping malls and are open for longer hours. The analysts on the corporate staff would like to develop a model to show how a store’s revenues depend on the number of hours that it is open. They have collected the following information from a sample of stores.
Hours of Operation
Average Revenue ($)
40
5958
44
6662
48
6004
48
6011
60
7250
70
8632
72
6964
90
11097
100
9107
168
11498
Use a linear function (e.g., y = ax + b; where a and b are parameters to optimize) to represent the relationship between revenue and operating hours and find the values of the parameters using the nonlinear solver that provide the best fit to the given data. What revenue does your model predict for 120 hours?
Suggest a two-parameter…
Chapter 4 Solutions
Practical Management Science
Ch. 4.2 - Prob. 1PCh. 4.2 - Prob. 2PCh. 4.2 - Prob. 3PCh. 4.2 - Prob. 4PCh. 4.2 - Prob. 5PCh. 4.2 - Prob. 6PCh. 4.3 - Prob. 7PCh. 4.3 - Prob. 8PCh. 4.3 - Prob. 9PCh. 4.3 - Prob. 10P
Ch. 4.3 - Prob. 11PCh. 4.3 - Prob. 12PCh. 4.4 - Prob. 13PCh. 4.4 - Prob. 14PCh. 4.4 - Prob. 15PCh. 4.4 - Prob. 16PCh. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - Prob. 19PCh. 4.5 - Prob. 20PCh. 4.5 - Prob. 21PCh. 4.5 - Prob. 22PCh. 4.5 - Prob. 23PCh. 4.5 - Prob. 24PCh. 4.5 - Prob. 25PCh. 4.6 - Prob. 26PCh. 4.6 - Prob. 27PCh. 4.6 - Prob. 28PCh. 4.6 - Prob. 29PCh. 4.7 - Prob. 30PCh. 4.7 - Prob. 31PCh. 4.7 - Prob. 32PCh. 4.7 - Prob. 33PCh. 4.7 - Prob. 34PCh. 4.7 - Prob. 35PCh. 4.7 - Prob. 36PCh. 4.7 - Prob. 37PCh. 4.7 - Prob. 38PCh. 4.7 - Prob. 39PCh. 4.7 - Prob. 40PCh. 4.8 - Prob. 41PCh. 4.8 - Prob. 42PCh. 4.8 - Prob. 43PCh. 4.8 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98PCh. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - Prob. 102PCh. 4 - Prob. 103PCh. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - Prob. 106PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - Prob. 132PCh. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- A roller coaster is being designed for a new theme park. Two "trains" are on the track at any given time. One train is being unloaded/reloaded while the other is moving along the track. The track itself takes 10 minutes to complete. The train being loaded should depart before the arriving train is no closer than one minute away. Each car of a train accommodates four people. Loading a car is estimated to take 6 seconds per passenger. Unloading is estimated to take 6 seconds per passenger. Suppose that (unlike actual roller coasters), only one car can be loaded or unloaded at a time. Unloading can NOT occur at the same time as loading. In order to maximize the number of potential passengers, how many cars should the train be made up of? Round your answer to the nearest whole car.arrow_forwardPlease help me. Thankyou.arrow_forwardDear weber, Unfortunately, my question always has no unable to answer. Here, I want to help you to solve my question. The Answer to my last question regarding the formulation of the problem is: The Reliance Manufacturing Company produces an aircraft part. The company can produce the part entirely at a flexible work center with multiple computerized machines. The company has four work centers, all of which are different because they were purchased at different times. Each work center has a single operator; however, the company’s operators have different skill levels, resulting in different levels of daily output and product quality. The following tables show the average daily output and an average number of defects per day for each of the company’s five operators who are capable of producing the aircraft part: Table 1 Operator Average Daily Output per Machine A B C D 1 18 20 21 17 2 19 15 22 18 3 20 20 17 19 4 24 21 16 23…arrow_forward
- A trust officer at the Blacksburg National Bank needs to determine how to invest $100,000 in the following collection of bonds to maximize the total annual return (before tax). Bond Annual Return Maturity Risk Tax-Free A 9.5% Long High Yes B 8.0% Short Low Yes C 9.0% Long Low No D 9.0% Long High Yes E 9.0% Short High No The officer wants to invest as least 50% of the money in short-term issues and no more than 50% in high-risk issues. At least 30% of the funds should go in tax-free investments, and at least 40% of the total annual return should be tax free. Suppose the decision variable represents the amount of money invested in bond for . Formulate a linear programming (LP) model to solve the optimal strategy. 1. Write down the constraint using the defined decision variables requiring “invest as least 50% of the money in short-term issues”. 2. Write down the constraint using the defined decision…arrow_forwardThere are two companies manufacturing drones. Company A manufactures mass market drones, while company B manufactures customised drones according to customers’ requirements. In 2020, company A produces 3,200 drones, 3% of which were found to be defective and cannot pass the quality check. Company A employs 5 workers working an average of 8 hours a day in the drone production, and they worked 200 working days in 2020.In contrast, company B produces 900 drones, 10% of which were found to be defective and cannot pass the quality check. Company B employs 3 workers working an average of 6 hours a day in the drone production, and they worked 170 days in 2020. (a) If the drone manufacturing is seen as a process, what is considered as the output of the production processes of companies A and B and why? (b) Measure the single-factor manpower productivity for the two companies. (c) Is it reasonable to compare the manpower productivity of the two companies and reach a conclusion that one company…arrow_forwardA trust officer at the Blacksburg National Bank needs to determine how to invest $150,000 in the following collection of bonds to maximize the annual return. Bond Annual Return Maturity Risk Tax Free A 9.5% Long High Yes B 8.0% Short Low Yes C 9.0% Long Low No D 9.0% Long High Yes E 9.0% Short High No The officer wants to invest at least 40% of the money in short-term issues and no more than 20% in high-risk issues. At least 25% of the funds should go in tax-free investments, and at least 45% of the total annual return should be tax free. Formulate the LP model for this problem. Create the spreadsheet model and use Solver to solve the problem. Note:- Do not provide handwritten solution. Maintain accuracy and quality in your answer. Take care of plagiarism. Answer completely. You will get up vote for sure.arrow_forward
- Author: Leo A. Ruggle, Professor, Department of Accounting, Mankato State University Arnie Armstrong has been with Pierce Auto Parts Manufacturing Company for 23 years. Recently, he was appointed Director of Manufacturing Computer Services. In just six weeks in this new position, [he] has moved to reduce the amount of information provided to manufacturing department managers by 60 percent. He argues that excess data is distracting, unused, and expensive to provide. Willy McClean has been department manager for 12 years. During a coffee break with some of his department production supervisors, Willy is quite vocal about the change. “Who’s this guy Armstrong to tell us what data we need? He needs to be out here for a few weeks to find out what it’s like. Keep it quiet, but I’ve got a contact in Computer Services who’ll get me all the data analyses I want for just a $20 bill each month. It’s a good deal, and Armstrong will never know. How does he expect us to make good decisions about…arrow_forwardA small petroleum company owns two refineries plant. Refinery 1 costs $20,000 per day to operate, and it can produce 400 barrels of high-grade oil, 300 barrels of medium-grade oil, and 200 barrels of low-grade oil each day. Refinery 2 is newer and more modern. It costs $25,000 per day to operate, and it can produce 300 barrels of high-grade oil, 400 barrels of medium- grade oil, and 500 barrels of low-grade oil each day. The company has orders totaling 25,000 barrels of high-grade oil, 27,000 barrels of medium-grade oil, and 30,000 barrels of low-grade oil. Set up linear minimization problem using Simplex method. Determine the days to run each refinery to minimize the cost in order to meet its order.arrow_forwardDo not use chatgpt.arrow_forward
- FRUIT COMPUTER COMPANY Fruit Computer Company manufactures memory chips in batches of ten chips. From past experience, Fruit knows that 80% of all batches contain 10% (1 out of 10) defective chips, and 20% of all batches contain 50% (5 out of 10) defective chips. If a good (that is, 10% defective) batch of chips is sent to the next stage of production, processing costs of $4000 are incurred, and if a bad batch (50% defective) is sent on to the next stage of production, processing costs of $16000 are incurred. Fruit also has the alternative of reworking a batch at a cost of $4000. A reworked batch is sure to be a good batch. Alternatively, for a cost of $400, Fruit can test one chip from each batch in an attempt to determine whether the batch is defective. QUESTIONS 1.Determine a strategy so Fruit can minimize the expected total cost per batch. 2.Compute the EVSI and EVPI.arrow_forwardThe Decision Sciences Department is tyring to determine whether to rent a slow or fast copier. The department believes that an employee's time is worth $15/hour. The slow copier rents for $4/hr, and it takes an employee an average of 10 minutes to complete copying. The fast copier rents for $15/hr, and it takes an employee an average of 6 minutes to complete copying. On average, four employees per hour need to use the copying machine. (Assume the copying times and interarrival times to the copying machine are exponentially distributed.) Which machine should the department rent to minimize expected total cost per hour? Please note this class revolves around Microsoft Excel so the answer I need needs to show the formulas in Excel, along with any corresponding graphs, etc. Thank you in advance!arrow_forwardUse excel for this problem A trust officer at the Blacksburg National Bank needs to determine how to invest $150,000 in the following collection of bonds to maximize the annual return. Bond Annual Return Maturity Risk Tax Free A 9.5% Long High Yes B 8.0% Short Low Yes C 9.0% Long Low No D 9.0% Long High Yes E 9.0% Short High No The officer wants to invest at least 40% of the money in short-term issues and no more than 20% in high-risk issues. At least 25% of the funds should go in tax-free investments, and at least 45% of the total annual return should be tax free. Formulate the LP model for this problem. Create the spreadsheet model and use Solver to solve the problem.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,