Concept explainers
Consider the following steady, two-dimensional velocity field:
Is there a stagnation point in this flow field? If so, where is it?
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Fluid Mechanics: Fundamentals and Applications
- The stream function o in a two-dimensional flow field is given as 9 = 4x – 3y + 7xy (a) Prove that this flow field is irrotational and that it satisfies the continuity equation. Find the potential flow function P(x, y) for this flow field with boundary condition 0 = 0 at x = 2, y = 1. (b)arrow_forwardTwo velocity components of a steady, incompressible flow field are known: u = 2ax + bxy + cy2 and ? = axz − byz2, where a, b, and c are constants. Velocity component w is missing. Generate an expression for w as a function of x, y, and z.arrow_forwardA fluid has a velocity field defined by u = x + 2y and v = 4 -y. In the domain where x and y vary from -10 to 10, where is there a stagnation point? Units for u and v are in meters/second, and x and y are in meters. Ox = 2 m. y = 1 m x = 2 m, y = 0 No stagnation point exists x = -8 m, y = 4 m Ox = 1 m, y = -1 m QUESTION 6 A one-dimensional flow through a nozzle has a velocity field of u = 3x + 2. What is the acceleration of a fluid particle through the nozzle? Assume u, x and the acceleration are all in consistent units. O 3 du/dt 9x + 6 1.5 x2 + 2x O Oarrow_forward
- The velocity field of incompressible flow in a Cartesian system is represented by V = 2 (x? – y?) i+ vj+ 3k Which one of the following expressions for v is valid?arrow_forward2- For a certain incompressible flow field it is suggested that the velocity components are given by the equations u = 2xy v = –x²y w = 0 Is this a physically possible flow field? Explain.arrow_forwardConsider the velocity field, ▼ — (x – 2y)i — (2x + y)j. What is the value of the velocity potential function at = the point (2,3)? Answer:arrow_forward
- Urgent pleasearrow_forward2. Consider the two-dimensional time-dependent velocity field u(x, t) = (sint, cost, 0), in the basis of Cartesian coordinates. a) Determine the streamlines passing through the point x = 0 at the times t = 0, π/2, π and 3π/2. b) Determine the paths of fluid particles passing through the point x = 0 at the same times, to = 0, π/2, 7 and 37/2. Hence, describe their motion. ㅠ c) Find the streakline produced by tracer particles continuously released at the point xo = 0 and find its position at t = 0, π/2, π and 37/2. Hence describe its motion.arrow_forward2. Consider the Eulerian velocity field u(x, t) = y i + (x – sin t) j, where x = x i + yj and t is the time. Please explain how to find an expression for the streamlines that pass through the point (0, yo) for yo ER. Then, find the nonparametric expression for the pathline of the particle that passes through the point (0, 1/2 ) at t = 0, describing the motion.arrow_forward
- An Eulerian velocity vector field is described by V = 2i + yz2tj −z3t3k, where i, j and k are unit vectors in the x-, y- and z-directions, respectively. (a) Is this flow one-, two-, or three-dimensional? (b) Is this flow steady? (c) Is the flow incompressible or compressible? (d) Find the z-component of the acceleration vector.arrow_forwardConsider the two-dimensional incompressible velocity potentialϕ = xy + x 2 - y 2 . ( a ) Is it true that = ∆2 ϕ = 0, and, ifso, what does this mean? ( b ) If it exists, fi nd the streamfunction ψ ( x , y ) of this fl ow. ( c ) Find the equation of thestreamline that passes through ( x , y ) = (2, 1).arrow_forwardA two-dimensional incompressible velocity fi eld has u =K (1 - e - ay ), for x ≤ L and 0 ≤ y ≤ ∞. What is the mostgeneral form of υ ( x , y ) for which continuity is satisfi edand υ = υ 0 at y= 0? What are the proper dimensions forconstants K and a ?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY