
(a)
Interpretation: Ground-state electronic configuration of the given set of metal ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore if there is a possibility of forming half filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When cation is formed it means the electrons are removed from the outermost orbital of atom. If anion is formed means then the electrons are added to the atom in its outermost orbital.
(a)

Answer to Problem 4.73QP
Answer
The ground-state electronic configuration of (a) is
To write: Ground-state electronic configuration of
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(b)
Interpretation: Ground-state electronic configuration of the given set of metal ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore if there is a possibility of forming half filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When cation is formed it means the electrons are removed from the outermost orbital of atom. If anion is formed means then the electrons are added to the atom in its outermost orbital.
To write: Ground-state electronic configuration of
(b)

Answer to Problem 4.73QP
Answer
The ground-state electronic configuration of (b) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(c)
Interpretation: Ground-state electronic configuration of the given set of metal ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore if there is a possibility of forming half filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When cation is formed it means the electrons are removed from the outermost orbital of atom. If anion is formed means then the electrons are added to the atom in its outermost orbital
To write: Ground-state electronic configuration of
(c)

Answer to Problem 4.73QP
Answer
The ground-state electronic configuration of (c) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(d)
Interpretation: Ground-state electronic configuration of the given set of metal ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore if there is a possibility of forming half filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When cation is formed it means the electrons are removed from the outermost orbital of atom. If anion is formed means then the electrons are added to the atom in its outermost orbital.
To write: Ground-state electronic configuration of
(d)

Answer to Problem 4.73QP
Answer
The ground-state electronic configuration of (d) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(e)
Interpretation: Ground-state electronic configuration of the given set of metal ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore if there is a possibility of forming half filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When cation is formed it means the electrons are removed from the outermost orbital of atom. If anion is formed means then the electrons are added to the atom in its outermost orbital.
To write: Ground-state electronic configuration of
(e)

Answer to Problem 4.73QP
Answer
The ground-state electronic configuration of (e) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry Atoms First, Second Edition
- Consider this organic reaction: ( Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. Click and drag to start drawing a structure. Х : а ค 1arrow_forwardIn the drawing area below, draw the major products of this organic reaction: If there are no major products, because nothing much will happen to the reactant under these reaction conditions, check the box under the drawing area instead. 1. NaH 2. CH3Br ? Click and drag to start drawing a structure. No reaction. : ☐ Narrow_forward+ Predict the major product of the following reaction. : ☐ + ☑ ค OH H₂SO4 Click and drag to start drawing a structure.arrow_forward
- Consider this organic reaction: ... OH CI Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. ☐ No Reaction. Click and drag to start drawing a structure. : аarrow_forwardConsider the following reactants: Br Would elimination take place at a significant rate between these reactants? Note for advanced students: by significant, we mean that the rate of elimination would be greater than the rate of competing substitution reactions. yes O no If you said elimination would take place, draw the major products in the upper drawing area. If you said elimination would take place, also draw the complete mechanism for one of the major products in the lower drawing area. If there is more than one major product, you may draw the mechanism that leads to any of them. Major Products:arrow_forwardDraw one product of an elimination reaction between the molecules below. Note: There may be several correct answers. You only need to draw one of them. You do not need to draw any of the side products of the reaction. OH + ! : ☐ + Х Click and drag to start drawing a structure.arrow_forward
- Find one pertinent analytical procedure for each of following questions relating to food safety analysis. Question 1: The presence of lead, mercury and cadmium in canned tuna Question 2: Correct use of food labellingarrow_forwardFormulate TWO key questions that are are specifically in relation to food safety. In addition to this, convert these questions into a requirement for chemical analysis.arrow_forwardWhat are the retrosynthesis and forward synthesis of these reactions?arrow_forward
- Which of the given reactions would form meso product? H₂O, H2SO4 III m CH3 CH₂ONa CH3OH || H₂O, H2SO4 CH3 1. LiAlH4, THF 2. H₂O CH3 IVarrow_forwardWhat is the major product of the following reaction? O IV III HCI D = III ა IVarrow_forwardThe reaction of what nucleophile and substrate is represented by the following transition state? CH3 CH3O -Br อ δ CH3 Methanol with 2-bromopropane Methanol with 1-bromopropane Methoxide with 1-bromopropane Methoxide with 2-bromopropanearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





