(a)
Interpretation: Ground-state electronic configuration of the given set of metal ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration of
(a)
Answer to Problem 4.72QP
Answer
The ground-state electronic configuration of (a) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(b)
Interpretation: Ground-state electronic configuration of the given set of metal ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration of
(b)
Answer to Problem 4.72QP
Answer
The ground-state electronic configuration of (b) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(c)
Interpretation: Ground-state electronic configuration of the given set of metal ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration of
(c)
Answer to Problem 4.72QP
Answer
The ground-state electronic configuration of (c) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(d)
Interpretation: Ground-state electronic configuration of the given set of metal ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration of
(d)
Answer to Problem 4.72QP
Answer
The ground-state electronic configuration of (d) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(e)
Interpretation: Ground-state electronic configuration of the given set of metal ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals are singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration of
(e)
Answer to Problem 4.72QP
Answer
The ground-state electronic configuration of (e) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry: Atoms First
- Write the electron configuration and orbital diagram for each ion and determine whether each is diamagnetic or paramagnetic.(a) Al3 + (b) S2 - (c) Fe3 +arrow_forwardWhich of the following is isoelectronic pair? (i) ICl2, ClO2 (ii) BrO2– , BrF2+ (iii) ClO2, BrF (iv) CN–, O3arrow_forward4. Write an appropriate set of four quantum numbers (n, l, ml & ms) that could be representative of a valence electron in each of the following atoms or ions. (a) Bi (m (b) Sr (c) Mo (d) Ru2+ (e) Euarrow_forward
- Discuss each conclusion from a study of redox reactions:(a) The sulfide ion functions only as a reducing agent.(b) The sulfate ion functions only as an oxidizing agent.(c) Sulfur dioxide functions as an oxidizing or a reducing agentarrow_forwardIdentify the species with the larger radius in each of the following pairs. (a) O Ga3+ O Ca2+ (b) O S (c) O Mg2+ O Al3+ (d) O Mg O Naarrow_forwardWrite electron configurations for the following ions, anddetermine which have noble-gas configurations: (a) Cd2+,(b) P3-, (c) Zr4+, (d) Ru3+, (e) As3-, (f) Ag+.arrow_forward
- When a nonmetal oxide reacts with water, it forms anoxoacid with the same nonmetal oxidation state. Give the name and formula of the oxide used to prepare each of these oxoacids:(a) hypochlorous acid; (b) chlorous acid; (c) chloric acid; (d) perchloric acid; (e) sulfuric acid; (f ) sulfurous acid; (g) nitricacid; (h) nitrous acid; (i) carbonic acid; ( j) phosphoric acid.arrow_forwardUse the noble-gas notation and write the ground-state electronic configurations of the following ions:(a) Ca2+ (b) Ga3+ (c) Cr3+arrow_forward(D) Zr (Z=40) and Hf (Z = 72) 7. Which halogen has the greatest first ionization energy? (A) F (B) Cl (C) Br (D) I 3. The isotope "Zn undergoes what mode of radioactive decay? (A) Alpha emission (C) Gamma emission (B) Beta emission (D) Positron emission 9. What is the bond order of carbon monoxide, CO? (A) 1.5 (B) 2.0 (C) 2.5 (D) 3.0 50. Which statements about the Lewis structure of thearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY