
Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.55QP
Interpretation Introduction
Interpretation: The given ionization energy has to be matched with the given electronic configuration of atoms.
Concept Introduction:
- An atom can be converted into an ion by removing an electron from its outermost shell or adding electron to the outermost shell. An amount of energy is required to remove an electron from the outermost shell of an atom to form a cation. The minimum energy required for removing an electron from an atom in gaseous phase is known as ionization energy.
- If one electron is removed from the atom to form a cation, the energy required is known as first ionization energy. If another electron is removed from the formed ion, the energy required is known as second ionization energy and this goes on. Second ionization energy is always higher than the first ionization energy because the effective nuclear charge increases.
- The trend followed in a periodic table for ionization energy is, it increases across the period and decreases down the group. This is because; across the period, the electrons are added to the same orbital and hence decrease in shielding. However, down the group, the electrons are added to a new sub-shell and hence increase in shielding.
To compare: the ionization energies with the electronic configuration given
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Using reaction free energy to predict equilibrium composition
Consider the following equilibrium:
2NO2 (g) = N2O4(g)
AGº = -5.4 kJ
Now suppose a reaction vessel is filled with 4.53 atm of dinitrogen tetroxide (N2O4) at 279. °C. Answer the following questions about this system:
Under these conditions, will the pressure of N2O4 tend to rise or fall?
Is it possible to reverse this tendency by adding NO2?
In other words, if you said the pressure of N2O4 will tend to rise, can that
be changed to a tendency to fall by adding NO2? Similarly, if you said the
pressure of N2O4 will tend to fall, can that be changed to a tendency to
'2'
rise by adding NO2?
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of NO 2 needed to reverse it.
Round your answer to 2 significant digits.
00
rise
☐ x10
fall
yes
no
☐ atm
G
Ar
1
Why do we analyse salt?
Curved arrows are used to illustrate the flow of electrons. Using
the provided starting and product structures, draw the curved
electron-pushing arrows for the following reaction or
mechanistic step(s).
Be sure to account for all bond-breaking and bond-making
steps.
H
H
CH3OH, H+
H
Select to Add Arrows
H°
0:0
'H
+
Q
HH
■ Select to Add Arrows
CH3OH,
H*
H.
H
CH3OH, H+
HH
■ Select to Add Arrows i
Please select a drawing or reagent from the question area
Chapter 4 Solutions
Chemistry: Atoms First
Ch. 4.1 - Prob. 4.1WECh. 4.1 - Prob. 1PPACh. 4.1 - Prob. 1PPBCh. 4.1 - Prob. 1PPCCh. 4.1 - Prob. 4.1.1SRCh. 4.1 - Prob. 4.1.2SRCh. 4.1 - Prob. 4.1.3SRCh. 4.2 - Prob. 4.2WECh. 4.2 - Without using a periodic table, give the...Ch. 4.2 - Identify the elements represented by (a)...
Ch. 4.2 - Prob. 2PPCCh. 4.2 - Prob. 4.2.1SRCh. 4.2 - Prob. 4.2.2SRCh. 4.4 - Referring only to a periodic table, arrange the...Ch. 4.4 - Prob. 3PPACh. 4.4 - Prob. 3PPBCh. 4.4 - Prob. 3PPCCh. 4.4 - Prob. 4.4WECh. 4.4 - Which element. Mg or Al, will have the higher...Ch. 4.4 - Explain why Rb has a lower IE1 than Sr, but Sr has...Ch. 4.4 - Imagine an arrangement of atomic orbitals in an...Ch. 4.4 - For each pair of elements, indicate which one you...Ch. 4.4 - Prob. 5PPACh. 4.4 - Explain why the EA1 for Ge is greater than the EA1...Ch. 4.4 - In the same hypothetical arrangement described in...Ch. 4.4 - For carbon and nitrogen, use the effective nuclear...Ch. 4.4 - Between which two charges is the attractive force...Ch. 4.4 - What must the distance be between charges of +2.25...Ch. 4.4 - Rank these pairs of charged objects in order of...Ch. 4.4 - Arrange the elements Ca, Sr, and Ba in order of...Ch. 4.4 - Prob. 4.4.2SRCh. 4.4 - For each of the following pairs of elements,...Ch. 4.4 - Prob. 4.4.4SRCh. 4.4 - Which pair of opposite charges has the greatest...Ch. 4.4 - What must the separation between charges of +2 and...Ch. 4.5 - Write electron configurations for the following...Ch. 4.5 - Write electron configurations for (a) O2, (b)...Ch. 4.5 - Prob. 7PPBCh. 4.5 - Prob. 7PPCCh. 4.5 - Prob. 4.8WECh. 4.5 - Prob. 8PPACh. 4.5 - Prob. 8PPBCh. 4.5 - Select the correct valence orbital diagram for the...Ch. 4.5 - What is the charge on a titanium ion that is...Ch. 4.5 - Prob. 4.5.2SRCh. 4.5 - Select the correct ground-state electron...Ch. 4.5 - Prob. 4.5.4SRCh. 4.5 - Which of the following ions is diamagnetic? (a)...Ch. 4.6 - Identify the isoelectronic series in the following...Ch. 4.6 - Arrange the following isoelectronic series in...Ch. 4.6 - List all the common ions that are isoelectronic...Ch. 4.6 - Prob. 9PPCCh. 4.6 - Prob. 4.6.1SRCh. 4.6 - Prob. 4.6.2SRCh. 4 - Prob. 4.1KSPCh. 4 - Prob. 4.2KSPCh. 4 - Prob. 4.3KSPCh. 4 - Prob. 4.4KSPCh. 4 - Briefly describe the significance of Mendeleevs...Ch. 4 - What is Moseleys contribution to the modem...Ch. 4 - Describe the general layout of a modern periodic...Ch. 4 - What is the most important relationship among...Ch. 4 - Prob. 4.5QPCh. 4 - Prob. 4.6QPCh. 4 - Prob. 4.7QPCh. 4 - Prob. 4.8QPCh. 4 - Without referring to a periodic table, write the...Ch. 4 - Prob. 4.10QPCh. 4 - Prob. 4.11QPCh. 4 - Prob. 4.12QPCh. 4 - For centuries, arsenic has been the poison of...Ch. 4 - In the periodic table, the element hydrogen is...Ch. 4 - An atom of a certain clement has 16 electrons....Ch. 4 - Prob. 4.16QPCh. 4 - Prob. 4.17QPCh. 4 - Prob. 4.18QPCh. 4 - Prob. 4.19QPCh. 4 - For each of the following ground-state electron...Ch. 4 - Determine what element is designated by each of...Ch. 4 - Prob. 4.22QPCh. 4 - Explain why there is a greater increase in...Ch. 4 - The election configuration of B is1s22s22p1. (a)...Ch. 4 - The election configuration of C is1s22s22p1. (a)...Ch. 4 - Prob. 4.26QPCh. 4 - Prob. 4.27QPCh. 4 - Equation 4.2 is used to calculate the force...Ch. 4 - Use the second period of the periodic table as an...Ch. 4 - Prob. 4.30QPCh. 4 - Prob. 4.31QPCh. 4 - Prob. 4.32QPCh. 4 - Prob. 4.33QPCh. 4 - Prob. 4.34QPCh. 4 - Prob. 4.35QPCh. 4 - Prob. 4.36QPCh. 4 - Prob. 4.37QPCh. 4 - Prob. 4.38QPCh. 4 - Prob. 4.39QPCh. 4 - Consider two ions with opposite charges separated...Ch. 4 - Prob. 4.41QPCh. 4 - Prob. 4.42QPCh. 4 - Prob. 4.43QPCh. 4 - On the basis of their positions in the periodic...Ch. 4 - Prob. 4.45QPCh. 4 - Prob. 4.46QPCh. 4 - Prob. 4.47QPCh. 4 - Prob. 4.48QPCh. 4 - Prob. 4.49QPCh. 4 - Prob. 4.50QPCh. 4 - Prob. 4.51QPCh. 4 - Prob. 4.52QPCh. 4 - In general, the first ionization energy increases...Ch. 4 - Prob. 4.54QPCh. 4 - Prob. 4.55QPCh. 4 - Prob. 4.56QPCh. 4 - Prob. 4.57QPCh. 4 - Prob. 4.58QPCh. 4 - Specify which of the following elements you would...Ch. 4 - Considering their electron affinities, do you...Ch. 4 - Prob. 4.61QPCh. 4 - Prob. 4.62QPCh. 4 - Prob. 4.63QPCh. 4 - Prob. 4.64QPCh. 4 - Prob. 4.65QPCh. 4 - Prob. 4.66QPCh. 4 - Prob. 4.67QPCh. 4 - Prob. 4.68QPCh. 4 - Prob. 4.69QPCh. 4 - Write the ground-state electron configurations of...Ch. 4 - Write the ground-state electron configurations of...Ch. 4 - Prob. 4.72QPCh. 4 - Prob. 4.73QPCh. 4 - Identify the ions, each with a net charge of +1,...Ch. 4 - Prob. 4.75QPCh. 4 - Prob. 4.76QPCh. 4 - Group the species that are isoelectronic: Be2+, F,...Ch. 4 - For each pair of ions, determine which will have...Ch. 4 - Rank the following ions in order of increasing...Ch. 4 - Prob. 4.80QPCh. 4 - Prob. 4.81QPCh. 4 - Prob. 4.82QPCh. 4 - A metal ion with a net +3 charge has five...Ch. 4 - Identify the atomic ground-state electron...Ch. 4 - Each of the following ground-state electron...Ch. 4 - Prob. 4.86QPCh. 4 - Prob. 4.87QPCh. 4 - Prob. 4.88QPCh. 4 - Indicate which one of the two species in each of...Ch. 4 - Prob. 4.90QPCh. 4 - Prob. 4.91QPCh. 4 - Prob. 4.92QPCh. 4 - Prob. 4.93QPCh. 4 - Prob. 4.94QPCh. 4 - Prob. 4.95QPCh. 4 - Prob. 4.96QPCh. 4 - Prob. 4.97QPCh. 4 - Prob. 4.98QPCh. 4 - Prob. 4.99QPCh. 4 - Prob. 4.100QPCh. 4 - Arrange the following species in isoelectronic...Ch. 4 - Prob. 4.102QPCh. 4 - Prob. 4.103QPCh. 4 - Prob. 4.104QPCh. 4 - Prob. 4.105QPCh. 4 - Prob. 4.106QPCh. 4 - Prob. 4.107QPCh. 4 - Prob. 4.108QPCh. 4 - Contrary to the generalized trend that atomic...Ch. 4 - Prob. 4.110QPCh. 4 - Prob. 4.111QPCh. 4 - Prob. 4.112QPCh. 4 - Prob. 4.113QPCh. 4 - Prob. 4.114QPCh. 4 - Prob. 4.115QPCh. 4 - Prob. 4.116QPCh. 4 - Prob. 4.117QPCh. 4 - Prob. 4.118QPCh. 4 - Prob. 4.119QPCh. 4 - The energy needed for the following process is...Ch. 4 - Using your knowledge of the periodic trends with...Ch. 4 - Prob. 4.122QPCh. 4 - Prob. 4.123QPCh. 4 - Prob. 4.124QPCh. 4 - Explain, in terms of their electron...Ch. 4 - Prob. 4.126QPCh. 4 - Prob. 4.127QPCh. 4 - This graph charts the first six ionization...Ch. 4 - Prob. 4.129QPCh. 4 - Prob. 4.130QPCh. 4 - Prob. 4.131QPCh. 4 - Prob. 4.132QPCh. 4 - Predict the atomic number and ground-state...Ch. 4 - Prob. 4.134QPCh. 4 - Prob. 4.135QPCh. 4 - Prob. 4.136QPCh. 4 - The first six ionizations of a gaseous atom can be...Ch. 4 - Prob. 4.138QPCh. 4 - Prob. 4.139QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What are examples of analytical methods that can be used to analyse salt in tomato sauce?arrow_forwardA common alkene starting material is shown below. Predict the major product for each reaction. Use a dash or wedge bond to indicate the relative stereochemistry of substituents on asymmetric centers, where applicable. Ignore any inorganic byproducts H Šali OH H OH Select to Edit Select to Draw 1. BH3-THF 1. Hg(OAc)2, H2O =U= 2. H2O2, NaOH 2. NaBH4, NaOH + Please select a drawing or reagent from the question areaarrow_forwardWhat is the MOHR titration & AOAC method? What is it and how does it work? How can it be used to quantify salt in a sample?arrow_forward
- Predict the major products of this reaction. Cl₂ hv ? Draw only the major product or products in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If there will be no products because there will be no significant reaction, just check the box under the drawing area and leave it blank. Note for advanced students: you can ignore any products of repeated addition. Explanation Check Click and drag to start drawing a structure. 80 10 m 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility DII A F1 F2 F3 F4 F5 F6 F7 F8 EO F11arrow_forwardGiven a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H2? Similarly, if you said the pressure of N will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm Х ด ? olo 18 Ararrow_forward
- Four liters of an aqueous solution containing 6.98 mg of acetic acid were prepared. At 25°C, the measured conductivity was 5.89x10-3 mS cm-1. Calculate the degree of dissociation of the acid and its ionization constant.Molecular weights: O (15.999), C (12.011), H (1.008).Limiting molar ionic conductivities (λ+0 and λ-0) of Ac-(aq) and H+(aq): 40.9 and 349.8 S cm-2 mol-1.arrow_forwardDetermine the change in Gibbs energy, entropy, and enthalpy at 25°C for the battery from which the data in the table were obtained.T (°C) 15 20 25 30 35Eo (mV) 227.13 224.38 221.87 219.37 216.59Data: n = 1, F = 96485 C mol–1arrow_forwardIndicate the correct options.1. The units of the transport number are Siemens per mole.2. The Siemens and the ohm are not equivalent.3. The Van't Hoff factor is dimensionless.4. Molar conductivity does not depend on the electrolyte concentration.arrow_forward
- Ideally nonpolarizable electrodes can1. participate as reducers in reactions.2. be formed only with hydrogen.3. participate as oxidizers in reactions.4. form open and closed electrochemical systems.arrow_forwardIndicate the options for an electrified interface:1. Temperature has no influence on it.2. Not all theories that describe it include a well-defined electrical double layer.3. Under favorable conditions, its differential capacitance can be determined with the help of experimental measurements.4. A component with high electronic conductivity is involved in its formation.arrow_forwardTo describe the structure of the interface, there are theories or models that can be distinguished by:1. calculation of the charge density.2. distribution of ions in the solution.3. experimentally measured potential difference.4. external Helmoltz plane.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning


Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY