
Concept explainers
(a)
Interpretation:
The equilibrium constant for interconversion of given
Concept introduction:
The free energy diagram of a reaction is the plot of standard free energy versus reaction coordinate or reaction progress. The products and reactants are placed at their respective free energy. The difference in the free energy of products and reactants is the standard free energy of the reaction.

Answer to Problem 4.68AP
The equilibrium constant for interconversion of given alkenes is
The alkene that is more favorable is shown below.
Explanation of Solution
The given alkenes undergoing interconversion along with their free energy of formation are shown below.
Figure 1
The free energy change for the interconversion of alkenes is equal to the free energy of formation of the product minus the free energy of formation of the reactant.
Substitute the free energy of formation of product alkene and reactant alkene in the equation (1) as shown below.
The Gibbs free energy of the reaction is related to its equilibrium constant by the relation shown below.
Where,
•
•
The value of
Substitute the value of
Rearrange above equation to calculate the
Take the antilog on both sides of the equation as shown below.
The equilibrium constant for the interconversion of alkenes is
The value of equilibrium constant is high, therefore, the alkene on the product is more favored. This can also be understood from the negative value of Gibbs free energy of the reaction which indicates that the reaction is spontaneous. Therefore, alkene on the product side is more favorable which is shown below.
Figure 2
The equilibrium constant for interconversion of given alkenes is
The alkene that is more favorable is shown in Figure 2.
(b)
Interpretation:
The information of the rate at which the interconversion is taking place from the equilibrium constant value is to be stated.
Concept introduction:
The equilibrium constant of the reaction gives information about the

Answer to Problem 4.68AP
The rate of interconversion of alkene is moderate. The rate of forward reaction is
Explanation of Solution
The equilibrium constant in terms of the concentration of reactant alkene and product alkene is shown below.
The value of the equilibrium constant is
Substitute the value of the equilibrium constant in the above expression.
The concentration of product alkene at equilibrium is only
The equilibrium constant of the reaction is the ratio of rate constant of forward reaction and backward reaction.
The rate of interconversion of alkene is moderate from the value of the equilibrium constant.
Want to see more full solutions like this?
Chapter 4 Solutions
Organic Chemistry Study Guide and Solutions
- Q3: Arrange each group of compounds from fastest SN2 reaction rate to slowest SN2 reaction rate. a) CI Cl فيكم H3C-Cl A B C D Br Br b) A B C Br H3C-Br Darrow_forwardQ2: Group these solvents into either protic solvents or aprotic solvents. Acetonitrile (CH3CN), H₂O, Acetic acid (CH3COOH), Acetone (CH3COCH3), CH3CH2OH, DMSO (CH3SOCH3), DMF (HCON(CH3)2), CH3OHarrow_forwardSuppose the rate of evaporation in a hot, dry region is 1.76 meters per year, and the seawater there has a salinity of 35 ‰. Assuming a 93% yield, how much salt (NaCl) can be harvested each year from 1 km2 of solar evaporation ponds that use this seawater as a source?arrow_forward
- helparrow_forwardExplain why only the lone pairs on the central atom are taken into consideration when predicting molecular shapearrow_forward(ME EX1) Prblm #9/10 Can you explain in detail (step by step) I'm so confused with these problems. For turmber 13 can u turn them into lewis dot structures so I can better understand because, and then as well explain the resonance structure part. Thanks for the help.arrow_forward
- Problems 19 and 20: (ME EX1) Can you please explain the following in detail? I'm having trouble understanding them. Both problems are difficult for me to explain in detail, so please include the drawings and answers.arrow_forward(ME EX1) Prblm #4-11 Can you please help me and explain these I'm very confused in detail please. Prblm number 9 I don't understand at all (its soo confusing to me and redraw it so I can better depict it).arrow_forwardME EX1) Prblm #19-20 I'm so confused with these problems. Can you please help me solve them and explain them? Problems number 19-20, and thanks! step by step and in detail for me please helparrow_forward
- Calculate the flux of oxygen between the ocean and the atmosphere, given that: Temp = 18°C Salinity = 35 ppt Density = 1025 kg/m3 Oxygen concentration measured in bulk water = 263.84 mmol/m3 Wind speed = 7.4 m/s Oxygen is observed to be about 10% initially supersaturatedarrow_forward( ME EX1) Prblm 27-28: Can you explain to me both prblms in detail and for prblm 28 what do you mean bi conjugated bi ponds and those structures I'm confused...arrow_forwardA. Determine the number of electrons in a system of cyclic conjugation (zero if no cyclic conjugation). B. Specify whether the species is "a"-aromatic, "aa"-anti-aromatic, or "na"-non-aromatic (neither aromatic nor anti-aromatic). (Presume rings to be planar unless structure obviously prevents planarity. If there is more than one conjugated ring, count electrons in the largest.) 1. A.Electrons in a cyclic conjugated system. 18 B.The compound is (a, aa, or na) a 2. A.Electrons in a cyclic conjugated system. 10 B.The compound is (a, aa, or na) naarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





