PRINT COMPANION ENGINEER THERMO
9th Edition
ISBN: 9781119778011
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.63P
To determine
The temperature and quality of the steam exiting the valve.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Steam enters a turbine operating at steady state at 800°F and 450 Ibf/in? and leaves as a saturated vapor at 1.4 Ibf/in?. The turbine
develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and
potential energy changes from inlet to exit.
Determine the exit temperature, in °F, and the volumetric flow rate of the steam at the inlet, in ft/s.
Steam enters a turbine operating at steady state at 850°F and 450 Ibf/in? and leaves as a saturated vapor at 1.0 lbf/in?. The turbine
develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2x 106 Btu/h. Neglect kinetic and
potential energy changes from inlet to exit.
Determine the exit temperature, in °F, and the volumetric flow rate of the steam at the inlet, in ft/s.
Step 1
Determine the exit temperature, in °F.
T2 =
°F.
Steam enters a turbine operating at steady state at 800°F and 450 lbf/in? and leaves as a saturated vapor at 1.4 lbf/in?. The turbine
develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and
potential energy changes from inlet to exit.
Determine the exit temperature, in °F, and the volumetric flow rate of the steam at the inlet, in ft /s.
Chapter 4 Solutions
PRINT COMPANION ENGINEER THERMO
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A closed, rigid tank is filled with water. Initially, the tank holds 1.0 lb of saturated vapor and 7.0 lb of saturated liquid, each at 212°F. The water is heated until the tank contains only saturated vapor. Kinetic and potential energy effects can be ignored. Determine the volume of the tank, in ft°, the temperature at the final state, in °F, and the heat transfer, in Btu.arrow_forwardWater vapor is cooled in a closed, rigid tank from T1 = 360°C and p1 = 100 bar to a final temperature of T2 = 320°C. Determine the final specific volume, v2, in m/kg, and the final pressure, p2, in bar. Step 1 Determine the final specific volume, vz, in m/kg. V2= i m/kg Save for Later Attempts: 0 of 3 used Submit Answer Using multiple attempts will impact your score. 10% score reduction after attempt 1 Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forward2 kg of water vapor in a piston-cylinder assembly expands at a constant pressure of 300 kPa (3.0 Bar) from a saturated vapor state to a volume of 2.064 m³. a. Determine the initial temperature, in °C b. Determine the final temperature, in °C C. Determine the work for the process, in kJ. Water p= constant = 3.0 bar V22.064 m³ m = 2 kg State 1-2: Isochoric Processarrow_forward
- A closed, rigid tank is filled with 0.02 lb of water, initially at 120°F and a quality of 50%. The water receives 8 Btu by heat transfer. Determine the temperature, in °F, pressure, in lbf/in.2, and quality of the water at its final state.arrow_forwardAn ideal gas undergoes a process from state 1 ( the properties are T₁ = 300 K, p₁ = 100 kPa) to state 2 (the properties are T₂ = 600 K, p₂ = 500 kPa). The specific heats of the ideal gas are: c = 1 kJ/kg-K and c = 0.7 kJ/kg-K.. The change in specific entropy of the ideal gas to two decimal places)from state 1 to state 2 (in kJ/kg-K) is......arrow_forwardCarbon dioxide (CO2) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 50 lbf/in2, and a volume of 2.2 ft3. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu.arrow_forward
- 1. As shown in the figure below, Refrigerant 134a enters a condenser operating at steady state at 70 lbf/in2, 160 °F and is condensed to saturated liquid at 60 lbf/in on the outside of tubes through which cooling water flows. In passing through the tubes, the cooling water increases in temperature by 20 'F and experiences no significant pressure drop. Cooling water can be modeled as incompressible with v-0.0161 ft'/lb and c = 1 Btu/lb R. The mass flow rate of the refrigerant is 3100 lb/h. Neglecting kinetic and potential energy effects and ignoring heat transfer from the outside of the condenser, determine: (a) The volumetric flow rate of the entering cooling water, in gal/min (b) The rate of heat transfer, in Btu/h, to the cooling water from the condensing refrigerant (5 points) Refrigerant 134a P= 70 in. T= 160 F 3100 heh 7,-7,-20F-20R Reirigerant 134a [P-60 lbin V Saturated liquidarrow_forwardA closed, rigid tank is filled with water. Initially, the tank holds 1.0 lb of saturated vapor and 6.0 lb of saturated liquid, each at 213°F. The water is heated until the tank contains only saturated vapor. Kinetic and potential energy effects can be ignored. Determine the volume of the tank, in ft3, the temperature at the final state, in °F, and the heat transfer, in Btu.arrow_forwardA piston–cylinder assembly contains 0.9 kg of air at a temperature of 300 K and a pressure of 1 bar. The air is compressed to a state where the temperature is 470 K and the pressure is 6 bars. During the compression, there is a heat transfer from the air to the surroundings equal to 20 kJ. Using the ideal gas model for air, determine the work during the process, in kJ.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License