Concept explainers
BIO FORCES ON A DANCER'S BODY. Dancers experience large forces associated with the jumps they make. For example, when a dancer lands after a vertical jump, the force exerted on the head by the neck must exceed the head's weight by enough to cause the head to slow down and come to rest. The head is about 9.4% of a typical person’s mass. Video analysis of a 65-kg dancer landing after a vertical jump shows that her head decelerates from 4.0 m/s to rest in a time of 0.20 s.
4.57 What is the magnitude of the average force that her neck exerts on her head during the landing? (a) 0 N; (b) 60 N; (c) 120 N; (d) 180 N.
4.58 Compared with the force her neck exerts on her head during the landing, the force her head exerts on her neck is (a) the same; (b) greater; (c) smaller; (d) greater during the first half of the landing and smaller during the second half of the landing.
4.59 While the dancer is in the air and holding a fixed pose, what is the magnitude of the force her neck exerts on her head0 (a) 0 N; (b) 60 N; (c) 120 N; (d) 180 N.
4.60 The forces on a dancer can be measured directly when a dancer performs a jump on a force plate that measures the force between her feet and the ground. A graph of force versus time throughout a vertical jump performed on a force plate is shown in Fig. P4.60. What is happening at 0.4 s? The dancer is (a) bending her legs so that her body is accelerating downward; (b) pushing her body up with her legs and is almost ready to leave the ground; (c) in the air and at the top of her jump; (d) landing and her feet have just touched the ground.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
Additional Science Textbook Solutions
The Cosmic Perspective Fundamentals (2nd Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Introduction to Electrodynamics
Conceptual Physical Science (6th Edition)
College Physics (10th Edition)
Physics: Principles with Applications
- If a single constant force acts on an object that moves on a straight line, the objects velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.arrow_forwardYou push an object, initially at rest, across a frictionless floor with a constant force for a time interval t, resulting in a final speed of v for the object. You then repeat the experiment, but with a force that is twice as large. What time interval is now required to reach the same final speed v? (a) 4 t (b) 2 t (c) t (d) t/2 (e) t/4arrow_forwardA ball is falling toward the ground. Which of the following statements are false? (a) The force that the ball exerts on Earth is equal in magnitude to the force that Earth exerts on the ball, (b) The ball undergoes the same acceleration as Earth. (c) The magnitude of the force the Earth exerts on the ball is greater than the magnitude of the force the ball exerts on the Earth.arrow_forward
- In the system shown in Figure P5.23, a horizontal force Facts on an object of mass m2 = 8.00 kg. The horizontal surface is frictionless. Consider the acceleration of the sliding object as a function of Fr. (a) For what values of Fr does the object of mass m1 = 2.00 kg accelerate upward? (b) For what values of Fr is the tension in the cord zero? (c) Plot the acceleration of the m2 object versus F1. Include values of Fr from 100 N to +100 N. Figure P5.23arrow_forwardThe systems shown in Figure P4.58 are in equilibrium. If the spring scales are calibrated in newtons, what do they read? Ignore the masses of the pulleys and strings and assume the pulleys and the incline in Figure P4.58d are frictionless. Figure P4.58arrow_forwardA 3.00-kg object is moving in a plane, with its x and y coordinates given by x = 5t2 1 and y = 3t3 + 2, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.00 s.arrow_forward
- An object of mass m = 1.00 kg is observed to have an acceleration a with a magnitude of 10.0 m/s2 in a direction 60.0 east of north. Figure P4.29 shows a view of the object from above. The force F2 acting on the object has a magnitude of 5.00 N and is directed north. Determine the magnitude and direction of the one other horizontal force F1 acting on the object. Figure P4.29arrow_forwardA student takes the elevator up to the fourth floor to see her favorite physics instructor. She stands on the floor of the elevator, which is horizontal. Both the student and the elevator are solid objects, and they both accelerate upward at 5.19 m/s2. This acceleration only occurs briefly at the beginning of the ride up. Her mass is 80.0 kg. What is the normal force exerted by the floor of the elevator on the student during her brief acceleration?arrow_forwardA crate remains stationary after it has been placed on a ramp inclined at an angle with the horizontal. Which of the following statements must be true about the magnitude of the frictional force that acts on the crate? (a) It is larger than the weight of the crate. (b) It is at least equal to the weight of the crate. (c) It is equal to sn. (d) It is greater than the component of the gravitational force acting down the ramp. (e) It is equal to the component of the gravitational force acting down the ramp.arrow_forward
- The starship Enterprise has its tractor beam locked onto some valuable debris and is trying to pull it toward the ship. A Klingon battle cruiser and a Romulan warbird are also trying to recover the item by pulling the debris with their tractor beams as shown in Figure P5.25. a. Given the following magnitudes of the tractor beam forces, find the net force experienced by the debris: FEnt = 7.59 106 N, FRom = 2.53 106 N, and FKling = 8.97 105 N. b. If the debris has a mass of 2549 kg, what is the net acceleration of the debris? FIGURE P5.25arrow_forwardA force F applied to an object of mass m1 produces an acceleration of 3.00 m/s2. The same force applied to a second object of mass m2 produces an acceleration of 1.00 m/s2. (a) What is the value of the ratio m1/m2? (b) If m1 and m2 are combined into one object, find its acceleration under the action of the force F.arrow_forwardThree crates with masses m1 = 5.45 kg, m2 = 7.88 kg, and m3 = 4.89 kg are in contact on a frictionless surface. A horizontal force F = 205 N is applied to the third crate as shown in Figure P5.83. a. What is the magnitude of the contact force between crates 1 and 2? b. What is the magnitude of the contact force between crates 2 and 3? FIGURE P5.83arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University