University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
14th Edition
ISBN: 9780134308142
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.4, Problem 4.4TYU
To determine
Whether it is easy or harder for the astronaut to walk around the planet and catch the ball which is moving horizontally.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Europa orbits Jupiter at a distance of 6.7 x 108 m from Jupiter's cloudtops
(the surface of the planet). If Jupiter's mass is 1.9 x 1027 kg and radius is
6.8 x 107 m, what is the speed of Europa as it orbits in m/s?
Round to the nearest hundredth. Don't worry about putting units, just put
the number.
Help me please how can I solve this question?
A boy jumps a distance of 2m on the surface of the earth. What distance will he jump on the surface of the moon where g is 1/6th of the value on the surface of the earth ?
☠ ☠ DONT COPY FROM ANY OTHER WEBSITES ☠ ☠
Chapter 4 Solutions
University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
Ch. 4.1 - Figure 4.5 shows a force F acting on a crate. With...Ch. 4.2 - In which of the following situations is there zero...Ch. 4.3 - Rank the following situations in order of the...Ch. 4.4 - Prob. 4.4TYUCh. 4.5 - You are driving a car on a country road when a...Ch. 4 - Can a body be in equilibrium when only one force...Ch. 4 - A ball thrown straight up has zero velocity at its...Ch. 4 - A helium balloon hovers in midair, neither...Ch. 4 - When you fly in an airplane at night in smooth...Ch. 4 - If the two ends of a rope in equilibrium are...
Ch. 4 - You tie a brick lo the end of a rope and whirl the...Ch. 4 - When a car stops suddenly, the passengers tend to...Ch. 4 - Some people say that the force of inertia (or...Ch. 4 - A passenger in a moving bus with no windows...Ch. 4 - Suppose you chose the fundamental physical...Ch. 4 - Why is the earth only approximately an inertial...Ch. 4 - Does Newtons second law hold true for an observer...Ch. 4 - Some students refer to the quantity ma as the...Ch. 4 - The acceleration of a falling body is measured in...Ch. 4 - You can play catch with a softball in a bus moving...Ch. 4 - Students sometimes say that the force of gravity...Ch. 4 - Why can it hurt your foot more to kick a big rock...Ch. 4 - Its not the fall that hurts you; its the sudden...Ch. 4 - A person can dive into water from a height of 10 m...Ch. 4 - Why are cars designed to crumple in front and back...Ch. 4 - When a string barely strong enough lifts a heavy...Ch. 4 - A large crate is suspended from the end of a...Ch. 4 - Which feels a greater pull due to the earths...Ch. 4 - Why is it incorrect to say that 1.0 kg equals 2.2...Ch. 4 - A horse is hitched to a wagon. Since the wagon...Ch. 4 - True or false? You exert a push P on an object and...Ch. 4 - A large truck and a small compact car have a...Ch. 4 - When a car comes to a stop on a level highway,...Ch. 4 - A small compact car is pushing a large van that...Ch. 4 - Consider a tug-of-war between two people who pull...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A manual for student pilots contains this passage:...Ch. 4 - If your hands are wet and no towel is handy, you...Ch. 4 - If you squat down (such as when you examine the...Ch. 4 - When a car is hit from behind, the occupants may...Ch. 4 - In a head-on auto collision, passengers who are...Ch. 4 - In a head-on collision between a compact 1000-kg...Ch. 4 - Suppose you are in a rocket with no windows,...Ch. 4 - Two dogs pull horizontally on ropes attached to a...Ch. 4 - To extricate an SUV stuck in the mud, workmen use...Ch. 4 - BIO Jaw Injury. Due to a jaw injury, a patient...Ch. 4 - A man is dragging a trunk up the loading ramp of a...Ch. 4 - Forces F1 and F2act at a point. The magnitude of...Ch. 4 - An electron (mass = 9.11 1031 kg) leaves one end...Ch. 4 - A 68.5-kg skater moving initially at 2.40 m/s on...Ch. 4 - You walk into an elevator, step onto a scale, and...Ch. 4 - A box rests on a frozen pond, which serves as a...Ch. 4 - A dockworker applies a constant horizontal force...Ch. 4 - A hockey puck with mass 0.160 kg is at rest at the...Ch. 4 - A crate with mass 32.5 kg initially at rest on a...Ch. 4 - A 4.50-kg experimental cart undergoes an...Ch. 4 - A 2.75-kg cat moves in a straight line (the...Ch. 4 - A small 8.00-kg rocket burns fuel that exerts a...Ch. 4 - An astronauts pack weighs 17.5 N when she is on...Ch. 4 - Superman throws a 2400-N boulder at an adversary....Ch. 4 - BIO (a) An ordinary flea has a mass of 210 g. How...Ch. 4 - At the surface of Jupiters moon Io, the...Ch. 4 - A small car of mass 380 kg is pushing a large...Ch. 4 - BIO World-class sprinters can accelerate out of...Ch. 4 - The upward normal force exerted by the floor is...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A student of mass 45 kg jumps off a high diving...Ch. 4 - Section 4.6 Free-Body Diagrams 4.25Crates A and B...Ch. 4 - You pull horizontally on block B in Fig. F4.26,...Ch. 4 - A ball is hanging from a long siring that is tied...Ch. 4 - CP A .22-caliber rifle bullet traveling at 350 m/s...Ch. 4 - A chair of mass 12.0 kg is sitting on the...Ch. 4 - A large box containing your new computer sits on...Ch. 4 - CP A 5.60-kg bucket of water is accelerated upward...Ch. 4 - CP You have just landed on Planet X. You release a...Ch. 4 - Two adults and a child want to push a wheeled cart...Ch. 4 - CP An oil tankers engines have broken down, and...Ch. 4 - CP BIO A Standing Vertical Jump. Basketball player...Ch. 4 - CP An advertisement claims that a particular...Ch. 4 - BIO Human Biomechanics. The fastest pitched...Ch. 4 - BIO Human Biomechanics. The fastest served tennis...Ch. 4 - Two crates, one with mass 4.00 kg and the other...Ch. 4 - CP Two blocks connected by a light horizontal rope...Ch. 4 - CALC To study damage to aircraft that collide with...Ch. 4 - CP A 6.50-kg instrument is hanging by a vertical...Ch. 4 - BIO Insect Dynamics. The froghopper (Philaenus...Ch. 4 - A loaded elevator with very worn cables has a...Ch. 4 - CP After an annual checkup, you leave your...Ch. 4 - CP A nail in a pine board stops a 4.9-N hammer...Ch. 4 - CP Jumping to the Ground. A 75.0-kg man steps off...Ch. 4 - The two blocks in Fig. P4.48 are connected by a...Ch. 4 - CP Boxes A and B are connected to each end of a...Ch. 4 - CP Extraterrestrial Physics. You have landed on an...Ch. 4 - CP CALC A mysterious rocket-propelled object of...Ch. 4 - CALC The position of a training helicopter (weight...Ch. 4 - DATA The table gives automobile performance data...Ch. 4 - DATA An 8.00-kg box sits on a level floor. You...Ch. 4 - DATA You are a Starfleet captain going boldly...Ch. 4 - Prob. 4.56CPCh. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCERS BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - The forces on a dancer can be measured directly...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are trapped on an earth-like planet with a mass of 5.00×1024 kg and a radius of 4000 km. You were able to build a cannon capable of launching a human. What velocity will you need to escape the planet? (We can simplify the Gravitational Constant G to 6.7x10-11 Nm2/kg)arrow_forwardPart A Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 2.1×104 m/s when at a distance of 2.6x1011 m from the center of the sun, what is its speed when at a distance of 4.0×1010 m. Express your answer in meters per second. Πνα ΑΣΦ m/sarrow_forwardTwo planets with radii R1(1400m) and R2(1000m) and accelerations g1(7.5m/s2) and g2(5.3m/s2) are separated by a distance D(from the center of the planet) and are members of a two-body system. A rocket is located on planet 1 and is sheduled to launch from this planet to a point between the planets where the net gravitational force on the rocket by the two planets is zero. At what distance from the center of planet 1 is the zero gravitational point?arrow_forward
- An inventor wants to launch small satellites into orbit by launching them straight up from the surface of the earth, at very high speeds. a) With what speed should he launch the satellite if it is to have a speed of 500 m/s at a height of 400 km? Ignore air resistance. b) By what percentage would your answer be in error if you used a flat earth approximation? y2 400 km r R, + y2 Vy= 500 ta/s After: y =0 km = R. Before: Re Eartharrow_forwardIf I shot an arrow straight up into the air, it would leave my bow traveling at a rate of 140 feet per second. Assume that the arrow is so "slick", that there is no friction (or air resistance). Without gravity it would continue to travel at this speed. After 8 seconds it would have traveled 8*140 feet. But, gravity will pull it back to the earth. The gravitational pull is measured as 16t2. So the height at any time t can be measured by the function h(t) = 140t - 16t2. At what time t will the arrow reach it's maximum height?arrow_forwardMars orbits the Sun at an average distance of 2.28 x 108 km with an orbital period of 1.881 yr. Io, which is one of the satellites of Jupiter, orbits its parent at an average distance of 4.22 x 105 km with an orbital period of 0.00485 yr. Use the above information to find the orbital speeds of Mars around the Sun and of Io around Jupiter. m/s m/s VMars VIO M = = What is the expression for the mass M of the parent in terms of the orbital speed v of the satellite, the orbital radius R of the satellite and the gravitational constant G? (Do not substitute numerical values; use variables only.) = = Now use your answers from parts (a) and (b) to find the ratio of the mass of Jupiter to that of the Sun. M Msarrow_forward
- A comet goes around the Sun in an elliptical orbit. At its farthest point, 600 million miles from the Sun, it is traveling with a speed of 15000 mi/h. How fast is it traveling at its closest approach to the Sun, at a distance of 100 million miles?arrow_forwardConsider an astronaut taking a space walk around the ISS to repair a solar array. If one of the tools is inadvertently pushed away from the ISS and towards Earth at a speed of 19 m/s, what is the 0 in µrad/s2 (this indicates that the tool will move - accelerate - away in the 0 direction as it moves away in the r direction). Assume that the ISS is in a circular orbit at an altitude of 418 km and moving at a speed of 7.66 km/s. The radius of Earth is 6378 km.arrow_forwardAn inventor wants to launch small satellites into orbit by launching them straight up from the surface of the earth, at very high speeds. a) With what speed should he launch the satellite if it is to have a speed of 500 m/s at a height of 400 km? Ignore air resistance. b) By what percentage would your answer be in error if you used a flat earth approximation? y2 400 km r, = R, + y2 vy= 500 tm/s After: Yi =0 km n = R Before: Re Eartharrow_forward
- question 21 in the imagearrow_forwardOn planet #5, a stone dropped from a height of 39.0 m above the ground will hit the ground at a speed of 44.0 m/s. What is the value of g for planet #5? 1 49.64 m/s^2 2 34.57 m/s^2 24.82 m/s^2 4 17.28 m/s^2arrow_forwardHow many years does it take for planet to go around the sun if its distance is 2.1 times away from the sun as the earth is. A 80 kg person, from the top of a 13 m cliff, throws a 100 g ball at an angle of 30 degrees above the horizontal. With what speed will the ball hit the ground below? (g = 9.8 m/s2).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON