Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.3.6P
To determine
(a)
The design strength for LRFD and allowable strength for ASD.
To determine
(b)
The design strength for LRFD and allowable strength for ASD.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Please do right answer and calculation.
7
7a
7b
7c
Alaterally supported beam was designed for flexure. The beam is safe for shear & deflection. The most economical
section is structural tubing however the said section is not readily available at the time of the construction. If you
are the engineer in charge of the construction what alternative section will be the best replacement? Why?
The section is 8" x 8" x 7.94 mm thick:
Use Fy=248 MPa: E=200,000 MPa
AISC
wall thickness
Ix 106
S x 103
Jx 103
mm4
mm3
mm4
rx =ry
Area
Ag (mm2) mm
Designation
Weight/m
8x8
7.94
47.36
6,039
79.25
37.84
371.99
60.35
expla'n briefly your cho'ce. (transform your comparative analys's 'nto a narative form to support your cho'ce)
8x8
14.29
80.61
10,258
76.2
59.52
585.02
99.06
8x8
72.7
9,290
76.96
54.53
539.13
90.32
8x8
9.53 56.09
7,161
78.48
44.12
432.62
70.76
mm
12.7
Zx 103
mm3
437.53
714.48
650.57
512.92
4. Calculate the design strength (ocPn) of W24X76 with length of 12 ft. and
pinned ends. A572 Grade50 steel is used. E=29x103 ksi. Show your work in
detail.
ASTM
Classification
A36
A572 Grade 50
A992 Grade 50
A500 Grade B
(HSS rect, sq)
A500 Grade B
(HSS round)
A53 Grade B
Yield
Strength
F, (ksi)
36
50
50
46
42
35
Ultimate
Strength
F (ksi)
58
65
65
58
58
60
Chapter 4 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 4 - Prob. 4.3.1PCh. 4 - Prob. 4.3.2PCh. 4 - Prob. 4.3.3PCh. 4 - Prob. 4.3.4PCh. 4 - Prob. 4.3.5PCh. 4 - Prob. 4.3.6PCh. 4 - Prob. 4.3.7PCh. 4 - Prob. 4.3.8PCh. 4 - Prob. 4.4.1PCh. 4 - Prob. 4.4.2P
Ch. 4 - Prob. 4.6.1PCh. 4 - Prob. 4.6.2PCh. 4 - Prob. 4.6.3PCh. 4 - Prob. 4.6.4PCh. 4 - Prob. 4.6.5PCh. 4 - Prob. 4.6.6PCh. 4 - Prob. 4.6.7PCh. 4 - Prob. 4.6.8PCh. 4 - Prob. 4.6.9PCh. 4 - Prob. 4.7.1PCh. 4 - Prob. 4.7.2PCh. 4 - Prob. 4.7.3PCh. 4 - Use A992 steel and select a W14 shape for an...Ch. 4 - Prob. 4.7.5PCh. 4 - Prob. 4.7.6PCh. 4 - Prob. 4.7.7PCh. 4 - The frame shown in Figure P4.7-8 is unbraced, and...Ch. 4 - Prob. 4.7.9PCh. 4 - Prob. 4.7.10PCh. 4 - Prob. 4.7.11PCh. 4 - Prob. 4.7.12PCh. 4 - Prob. 4.7.13PCh. 4 - Prob. 4.7.14PCh. 4 - Prob. 4.8.1PCh. 4 - Prob. 4.8.2PCh. 4 - Prob. 4.8.3PCh. 4 - Prob. 4.8.4PCh. 4 - Prob. 4.9.1PCh. 4 - Prob. 4.9.2PCh. 4 - Prob. 4.9.3PCh. 4 - Prob. 4.9.4PCh. 4 - Prob. 4.9.5PCh. 4 - Prob. 4.9.6PCh. 4 - Prob. 4.9.7PCh. 4 - Prob. 4.9.8PCh. 4 - Prob. 4.9.9PCh. 4 - Prob. 4.9.10PCh. 4 - Prob. 4.9.11PCh. 4 - Prob. 4.9.12P
Knowledge Booster
Similar questions
- Need urgent and correct solutionarrow_forwardTENSION MEMBERS: THE SINGLE 200 X 10 mm STEEL PLATE IS CONNECTED TO A 12 mm THICK STEEL PLATE BY FOUR 16 mm DIAMETER RIVETS AS SHOWN IN THE FIGURE. THE RIVETS USED ARE A502 GRADE 2, HOT DRIVEN RIVETS. THE STEEL IS ASTM A36 WITH Fy = 248 MPa AND Fu = 400 MPa. DETERMINE THE VALUE OF P. a. P BASED ON TENSION OF GROSS AREA b. P BASED ON TENSION OF NET AREA c. P BASED ON BEARING OF PROJECTED AREA d. P BASED ON SHEAR RUPTURE (BLOCK SHEAR)arrow_forwardTENSION MEMBERS: THE SINGLE 200 X 10 mm STEEL PLATE IS CONNECTED TO A 12 mm THICK STEEL PLATE BY FOUR 16 mm DIAMETER RIVETS AS SHOWN IN THE FIGURE. THE RIVETS USED ARE A502 GRADE 2, HOT DRIVEN RIVETS. THE STEEL IS ASTM A36 WITH Fy = 248 MPa AND Fu = 400 MPa. DETERMINE THE VALUE OF P. a. P BASED ON TENSION OF GROSS AREA b. P BASED ON TENSION OF NET AREA c. P BASED ON BEARING OF PROJECTED AREA d. P BASED ON SHEAR RUPTURE (BLOCK SHEAR)arrow_forward
- Determine the load capacity of the angle ASD. USE NSCP 2015.arrow_forwardDetermine the load capacity of the angle LRFD. USE NSCP 2015.arrow_forwardThe tension member shown below is C12 x 20.7 of A36 steel. Will it safely support a service dead load of 160kN and a service live load of 325kN? Use equation 3.1 for U. A. Use LRFD B. Use ASD Note: Use SI units (mm) for the following dimensions; Use CSI Steel for the Steel Properties. 12" 22" 22" 22" ооо ооо оооо 7/8-in.-diameter bolts C12 x 20.7arrow_forward
- Determine the available strength of the compression member shown in Figure , in each of the following ways: a. Use AISC Equation E3-2 or E3-3. Compute both the design strength for LRFD and the allowable strength for ASD.arrow_forwardA built-up section was made using PL414x12mm thk plates as shown in the figure below. It is pinned at both ends with additional support against weak axis at middle point. Assume A50 steel. PL414x12 DO Section W16x67 L x-axis a) Calculate moment of inertia at both axes in mm*. b) Determine the design compressive strength in kN if L-3m. c) Find the design compressive strength in kN if L=18m. Elevation y-axisarrow_forwardSTRENGTH OF MATERIALS UPVOTE WILL BE GIVEN. Please write the complete solutions legibly. Answer in 3 Decimal Places. Box the final answer. The truss is loaded with service loads (Dead load and Wind Load) as shown in the figure. Members DE is welded to a 10 mm thick gusset plate using maximum size of fillet weld and E70 electrodes (FEXX=485 MPa) also shown in the figure. All steel is A36 (Fy= 250 MPa and Fu = 400MPa). Use LRFD and the Metric Sizes Tables for Angles in the ASEP Steel Handbook. a. Determine the axial tensile force in member DE in kN.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning