Steel Design (Activate Learning with these NEW titles from Engineering!)
Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
Question
Book Icon
Chapter 4, Problem 4.7.10P
To determine

(a)

Axial Compressive design strength of column AB.

Expert Solution
Check Mark

Answer to Problem 4.7.10P

728kips

Explanation of Solution

Calculation:

calculate the ratio of column stiffness to girder at each and column AB by using the equation.

GA=ICLCIgLg

Here we have

G=ratio of column stiffness to girder stiffness

IC =Moment of inertia of column

Lg =Moment of inertia of girder

LC =Length of column

Lg =Length of column

GB=10

Here ratio of column stiffness to girder stiffness at end A is GA

For Joint A:

GA=ICLCIgLg

Substitute

IgLg=(80018+80020),IC=597,LC=15

GA=ICLCIgLg    =(59715)(80018+80020)     =0.471

Refer the alignment chart for the value of Kx=1.78

Calculate the effective slenderness ratio for column by using the equation

Here Kx is the effective length factor in X direction, rx is the radius of gyration in X direction, L is the length of the member between the supports

Effective slenderness ratio=KxLrx                                          =1.78(15×12)5.31                                          =60.34

Calculate the upper limit elasticity using the equation

Upper limit elasticity=4.71EFy                                 =4.712900050                                 =113.4

Since 60.34 is less than 113.34, the column is elastic

Calculate the factored load by LRFD by using the equation

Pu=1.2D+1.6L

He re D is the dead load, L is the live load

Substitute

D=50,L=150

Pu=1.2D+1.6L     =1.2(50)+1.6(150)     =300kips

Calculate the stress coming on the column

Stress=PuAgSubstitute Pu=300,Ag=21.1

Stress=PuAg         =30021.1         =14.22ksi

Refer table 421 form AISC steel manual τb=1.00

No modification is necessary

Calculate effective slenderness ratio in y direction

Effective slenderness ratio=KyLrySubstitute k=1.0,L=15ft,ry=3.04slenderness ratio=KyLry                          =1(15×12)883.04                          =59.21<60.34

Calculate the buckling stress using the formula.

Fe=π2E(KL/r)2Substitute E=29000,KL/r=60.34Fe=π2E(KL/r)2    =π22900060.342    =78.61ksi

Check for slenderness ratio by using the formula.

Slenderness ratio=4.71EFy

Here Fy is the yield strength

Fy=50ksi,E=29000

Slenderness ratio=4.712900050                           =113.4

Since 60.34 is less than 113.4, so calculate the buckling stress using the formula

Fcr=0.658(FyFe)Fy      =0.658(5078.61)(50)      =38.31ksi

Calculate the nominal compressive strength of column.

Pn=FcrAgHere we have Ag=21.1,Fcr=38.31,Pn=FcrAg    =38.31(21.1)    =808.3kipsCalculate the design strength of the column by LRFD method.

Pu=ϕPn     =0.9(808.3)     =728kips

Conclusion:

Hence, here the design strength is estimated using the formula: Pu=ϕP

ii.

To determine

Themaximum axial compressive strength of column AB.

ii.

Expert Solution
Check Mark

Answer to Problem 4.7.10P

484kips

Explanation of Solution

Calculation:

Calculate the factored load by ASD by using the equation

Pa=D+L

He re D is the dead load L is the live load

Substitute

D=50,L=150

Pa=D+L     =50+150     =200kips

Calculate stress coming on column.

Stress=PuAgPu=200,Ag=21.1Stress=PuAg         =20021.1         =9.47ksi

Refer table 421 form AISC steel manual τb=1

No modification is necessary

Calculate effective slenderness ratio in y direction

Effective slenderness ratio=KyLry

K=1.0,L=15ft,ry=3.04

slenderness ratio=KyLry                          =1(15×12)883.04                          =59.21<60.34

Calculate the buckling stress using the formula

Fe=π2E(KL/r)2Substitute E=29000,KL/r=60.34Fe=π2E(KL/r)2    =π22900060.342    =78.61ksi

Check for slenderness ratio by using the formula.

Slenderness ratio=4.71EFy

Here Fy is the yield strength.

Fy=50ksi,E=29000

Slenderness ratio=4.712900050                           =113.4

Since 60.34 is less than 113.4, so calculate the buckling stress using the formula.

Fcr=0.658(FyFe)Fy      =0.658(5078.61)(50)      =38.31ksi

Calculate the compressive strength of column.

Pn=FcrAgHere we have ,Ag=21.1,Fcr=38.31Pn=FcrAg    =38.31(21.1)    =808.3kips

Calculate the maximum strength by using the formula.

 Maximum  strength=PnΩ                              =808.31.67                             =484kips

Conclusion:

Therefore, the maximum strength is calculated using the formula:  Maximum  strength=PnΩ                             

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Max. Flow rate from catchment area=0.25 m³/s drain to road (one side road) having roof section with longitudinal slope %1, n=0.016, cross-section slope %1, 24 m width of road, 0.15 m curb stone. Gutter data: 7 cm high of water. 1-What is the capacity (or Max. flow rate) for this road? 2- With 0.5 m3 /s is it flood? 3-Whate is the clear zone in case Q=0.5 m³/s?
Estimate Q inlet for curb inlet in sump, If y=5 cm, L=0.5 m and %13 clogging.
3020,220 30 30m 120 Design inlet system for the road in figure below. C=0.93, i=65 mm/hr, Gutter data: y max.=9 cm, n=0.016, k=0.38, slope %1, Z=40, (space-bar-2 cm). Estimate inlet type. elevation in points (a-82.1, b=82 m), in point t rain water depth in point f>3 cm in u turn >5.5 cm. Sag point in S. Drow curbstone DATE DATE 5 100 Median strip 10 %1 d 72
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning