A liquid mixture contains 60.0 wt% ethanol (E), 5.0 wt% of a dissolved solute (S), and the balance water. A stream of this mixture is fed to a continuous distillation column operating at steady state. Product streams emerge at the top and bottom of the column. The column design calls for the product streams to have equal mass flow rates and for the top stream to contain 90.0 wt% ethanol and no S.
- Assume a basis of calculation, draw and fully label a process flowchart, do the degree-of-freedom analysis, and verify that all unknown stream flows and compositions can be calculated. (Don’t do any calculations yet.)
- Calculate (i) the mass fraction of S in the bottom stream and (ii) the fraction of the ethanol in the feed that leaves in the bottom product stream (i.e., kg E in bottom stream/kg E in feed) if the process operates as designed.
- An analyzer is available to detemrine the composition of ethanol-water mixtures. The calibration curve for the analyzer is a straight line on a plot on logarithmic axes of mass fraction of ethanol, x (kg E/kg mixture), versus analyzer reading, R. The line passes through the points (/? = 15, x = 0.100) and (R = 38, x = 0.400). Derive an expression for .r as a function of R(x = • • •) based on the calibration, and use it to determine the value of R that should be obtained if the top product stream from the distillation column is analyzed.
- Suppose a sample of the top stream is taken and analyzed and the reading obtained is not the one calculated in Part (c). Assume that the calculation in Part (c) is correct and that the plant operator followed the correct procedure in doing the analysis. Give five significantly different possible causes for the deviation between /^measured and /?predicted, including several assumptions made when writing the balances of Part (c). For each one, suggest something that the operator could do to check whether it is in fact the problem.
Learn your wayIncludes step-by-step video
Chapter 4 Solutions
Elementary Principles of Chemical Processes 4e Binder Ready Version + WileyPLUS Registration Card (Wiley Plus Products)
Additional Engineering Textbook Solutions
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Starting Out With Visual Basic (8th Edition)
Problem Solving with C++ (10th Edition)
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Introduction To Programming Using Visual Basic (11th Edition)
- need help with this phase transformations practise questionarrow_forwardhelp with this practise question on phase transformations.arrow_forwardDifferentiate between an ideal and a regular solution consisting of a mixture of A and B atoms. Which of these solutions, is likely to contain a random mixture of atoms at all temperatures? For the binary A-B ideal-solution, differentiate the equation for the configurational entropy of mixing with respect to concentration. Hence show that the slope of the free energy of mixing versus concentration curve is towards tinfinity when the mole fraction is 0 or 1. Does this make it easy or hard to purify materials? [50%] (ii) How can a phase that has a limited solubility for a particular solute be forced to accept larger concentrations which far exceed its equilibrium solubility? [20%] (iii) Atoms of A and B are arranged in a straight line at random, with the mole fraction of B equal to x. What is the probability of finding two A atoms next to each other? How would your calculation be modified if this were to be a two-dimensional array of A and B atoms? [20%] (iv) An alloy is to be made,…arrow_forward
- Can the method steps be given for these questions please 10 answer given is 0.01m/s 11 answer given is 0.067e Cnm where e is charge of electron divided by volume of unit cell, giving 0.165 C/m^2 12 answer is 0.08%arrow_forward3. Differentiate f(x) = x² sin(x). 4. Evaluate the limit: lim x 0 sin(2x) Xarrow_forwardDifferentiate between an ideal and a regular solution consisting of a mixture of A andB atoms. Which of these solutions, is likely to contain a random mixture of atomsat all temperatures? For the binary A-B ideal-solution, differentiate the equationfor the configurational entropy of mixing with respect to concentration. Hence showthat the slope of the free energy of mixing versus concentration curve is towards±infinity when the mole fraction is 0 or 1. Does this make it easy or hard to purifymaterials?arrow_forward
- Question During the solidification of a binary alloy, with a positive temperature gradient in the melt, a planar solid-liquid interface is moving at the steady state, Fig. Q1(i). The variation of the solute concentration, C, in the melt ahead of the interface is given by, b) If m is the liquidus gradient, or the slope of liquidus, Fig.Q1 (iv), how does the equilibrium temperature, T, vary with the melt composition C? T₁ = C=C1+ exp R.x D (equation 1.1) T L Solid Melt (iv) T₁ S S+L where Co is the nominal solute concentration in the alloy, Ko is the equilibrium distribution coefficient, R is the solid-liquid interface moving rate, D is the solute diffusivity in the melt and x is distance into the liquid phase, Fig. Q1(ii). Answer the questions in the steps below, to show that the level of constitutional supercooling is governed by both the actual temperature, T, and the composition, C, in the solidification front. a) Consider a point in the melt at a distance x away from the solid/melt…arrow_forwardPractise question of phase transformations topic that I need help on thank you.arrow_forwardPractise question:arrow_forward
- Barium titanate can exist in both the cubic and tetragonal crystal structures. Explain why the tetragonal form exhibits piezoelectricity whereas its cubic form does not. The transformation from cubic to tetragonal BaTiO3 occurs when the former is cooled below the Curie temperature of 120 ◦C. Describe how the change can be verified experimentally based on measurements made at ambient temperature.arrow_forwardCalleb Sandl Soda ash 5% crushing Recycling melting furnace C float bath 600 annealing Mixing Sec Packing cutting Lime Salt Care Dolomite Powder Coal Glass plant has the follownig manufacturing process in figure is the glass where the produced glass contain the following composition: SiO2 72.5%, CaO 12.3% Na20 14.0%, Fe203 0.8%, MgO 0.4% and the production capacity of the plant is 32000 ton /year and the melting furnace consist the following reaction equations: Na CO,+ aSiO, NagO aSiO + CO₂ (1) CaCOy + b$iO, → CaO - bsiO, + CO, (2) Na,SO, + cSiO2 + C-Nago cSiO, + SO₂ + CO (3) The last reaction may take place as in equations (4) or (5), and (6): Na₂SO, C Na₂SO3 + CO 2Na2SO4 + C Na,SO+cSiO, 2Na₂SO3 + CO2 - Na₂O eSiO2 + SO2 (5) (6) The ratios Na₂O/SiO, and CaO/SiO, are not molar ratios. The ratio may be of the type Na O/1.8SiO,, for example. In an ordinary window glass the molar ratios are approximately 1.5 mol Nago, I mol CaO, and 5 mol SiO,. Other glasses vary widely (Table 11.2).…arrow_forward1-A counterflow, concentric tube heat exchanger is used to cool the lubricating oil for a large industrial gas turbine engine. The flow rate of cooling water through the inner tube (Di = 25 mm) is 0.2 kg/s, while the flow rate of oil through the outer annulus (Do = 45 mm) is 0.1 kg/s. The oil and water enter at temperatures of 100 and 30 C, respectively. The exit temperature of hot fluid and cold fluid is 60 and 40 C. calculate the LMTD. Calculate the surface area of the heat exchanger. How long must the tube? Properties: unused engine oil: cp = 2131 J/kg K, μ=3.25 ×10^-2 N.s/m^2, k = 0.138 W/m.K, 4178 J/kg .K, u= 725×10^-6 N.s/m2, k = 0.625 W/m.K, Pr = 4.85 water: cp neer in which steam is condensarrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The