The volume ( mL ) of 2.26 M potassium hydroxide that contains 8.42 g of solute is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L . The expression to calculate the volume of the solution when the amount of compound in moles and molarity of solution are given is as follows: Volume of solution ( L ) = moles of solute ( mol ) ( 1 L of solution molarity of solution ( mol ) ) The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows: Moles of compound ( mol ) = [ given mass of compound ( g ) ( 1mole of compound ( mol ) molecular mass of compound ( g ) ) ]
The volume ( mL ) of 2.26 M potassium hydroxide that contains 8.42 g of solute is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L . The expression to calculate the volume of the solution when the amount of compound in moles and molarity of solution are given is as follows: Volume of solution ( L ) = moles of solute ( mol ) ( 1 L of solution molarity of solution ( mol ) ) The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows: Moles of compound ( mol ) = [ given mass of compound ( g ) ( 1mole of compound ( mol ) molecular mass of compound ( g ) ) ]
The volume (mL) of 2.26M potassium hydroxide that contains 8.42 g of solute is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the volume of the solution when the amount of compound in moles and molarity of solution are given is as follows:
Volume of solution(L)=moles of solute(mol)(1L of solutionmolarity of solution(mol))
The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows:
Moles of compound(mol)=[given massof compound(g)(1moleof compound(mol)molecular mass of compound(g))]
(b)
Interpretation Introduction
Interpretation:
The number of Cu2+ ions in 52L of 2.3Mcopper(II)chloride is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows:
Moles of compound(mol)=[volume of solution(L)(molarityofsolution(mol)1L of solution)]
The expression to calculate the amount of ions in moles is as follows:
amountofion(mol)=(moles of compound(mol))(moles of ion(mol)1mole of compound)
The expression to calculate the number of ions is as follows:
numberof ions=(moles of ions(mol))(6.022×1023ions1mole of ions)
(c)
Interpretation Introduction
Interpretation:
Molarity of 275 mL of solution containing 135 mmol of glucose is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the molarity of a solution when moles of solute and volume of solution are given is as follows:
Molarity of solution(M)=moles of solute(mol)volume of solution(L)
Curved arrows are used to illustrate the flow of electrons. Follow
the curved arrows and draw the structure of the missing
reactants, intermediates, or products in the following mechanism.
Include all lone pairs. Ignore stereochemistry. Ignore inorganic
byproducts.
H
Br2 (1 equiv)
H-
Select to Draw
Starting Alkene
Draw Major
Product
I
I
H2O
四:
⑦..
Q
Draw Major
Charged
Intermediate
I
NH (aq)+CNO (aq) → CO(NH2)2(s)
Experiment
[NH4] (M) [CNO] (M) Initial rate (M/s)
1
0.014
0.02
0.002
23
0.028
0.02
0.008
0.014
0.01
0.001
Calculate the rate contant for this reaction using the data provided in the table.
2CIO2 + 20H-1 CIO31 + CIO2 + H2O
Experiment
[CIO2], M
[OH-1], M
1
0.0500
0.100
23
2
0.100
0.100
3
0.100
0.0500
Initial Rate, M/s
0.0575
0.230
0.115
...
Given this date, calculate the overall order of this reaction.
Chapter 4 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book