(a)
Interpretation:
Whether the given
Concept introduction:
There are three types of equations that are utilized to represent an ionic reaction:
1. Molecular equation
2. Total ionic equation
3. Net ionic equation
The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented.
Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.
A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another.
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
1. Combination redox reaction.
2. Decomposition redox reaction.
3. Displacement redox reactions
(b)
Interpretation:
Whether the given redox reaction is a combination, decomposition, or displacement reaction is to be classified and molecular equation, net ionic equation, and the total ionic equation are to be written. Also, the oxidizing and reducing agent is to be identified.
Concept introduction:
There are three types of equations that are utilized to represent an ionic reaction:
1. Molecular equation
2. Total ionic equation
3. Net ionic equation
The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented.
Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.
A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another.
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
1. Combination redox reaction.
2. Decomposition redox reaction.
3. Displacement redox reactions
(c)
Interpretation:
Whether the given redox reaction is a combination, decomposition, or displacement reaction is to be classified and molecular equation, net ionic equation, and the total ionic equation are to be written. Also, the oxidizing and reducing agent is to be identified.
Concept introduction:
There are three types of equations that are utilized to represent an ionic reaction:
1. Molecular equation
2. Total ionic equation
3. Net ionic equation
The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented.
Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.
A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another.
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
1. Combination redox reaction.
2. Decomposition redox reaction.
3. Displacement redox reactions
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book
- EXERCISES: Complete the following exercises. You must show all work to receive full credit. 1. How many molecular orbitals can be built from the valence shell orbitals in O2? 2. Give the ground state electron configuration (e.g., 02s² 0*2s² П 2p²) for these molecules and deduce its bond order. Ground State Configuration Bond Order H2+ 02 N2arrow_forward7. Draw the Lewis structures and molecular orbital diagrams for CO and NO. What are their bond orders? Are the molecular orbital diagrams similar to their Lewis structures? Explain. CO Lewis Structure NO Lewis Structure CO Bond Order NO Bond Order CO Molecular Orbital Diagram NO Molecular Orbital Diagramarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Draw the condensed structure of 4-ethyl-1,2,4-trifluoro-2-methyloctane.arrow_forward5. The existence of compounds of the noble gases was once a great surprise and stimulated a great deal of theoretical work. Label the molecular orbital diagram for XeF (include atom chemical symbol, atomic orbitals, and molecular orbitals) and deduce its ground state electron configuration. Is XeF likely to have a shorter bond length than XeF+? XeF XeF+ Bond Orderarrow_forwardDon't used hand raitingarrow_forward
- 4. The superoxide ion, Oz, plays an important role in the ageing processes that take place in organisms. Judge whether O2 is likely to have larger or smaller dissociation energy than O2. Molecular Orbital Diagram 8 02 02 Does O2 have larger or smaller dissociation energy?: Bond Orderarrow_forwardWill a weak base with a pKa of 8.4 be best absorbed in the stomach or the intestine? Explain your reasoning behind your answer. Use a chemical equilibrium equation in your answer.arrow_forwardYou have started a patient on a new drug. Each dose introduces 40 pg/mL of drug after redistribution and prior to elimination. This drug is administered at 24 h intervals and has a half life of 24 h. What will the concentration of drug be after each of the first six doses? Show your work a. What is the concentration after the first dose? in pg/mL b. What is the concentration after the second dose? in pg/mL c. What is the concentration after the third dose? in pg/mLarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY