INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
8th Edition
ISBN: 9781260940961
Author: SMITH
Publisher: INTER MCG
Question
100%
Book Icon
Chapter 4, Problem 4.1P

(a)

Interpretation Introduction

Interpretation:

Heat transferred ( Q ) by SO2 on rise of temperature from 2000C to 11000C

Concept Introduction :

The transfer of heat in steady-flow exchangers for a gas is given as:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

(a)

Expert Solution
Check Mark

Answer to Problem 4.1P

  Q=470034.765J

Explanation of Solution

Given information:

  T1=2000CT1=2000C+273.15=473.15K

  T2= 11000CT2= 11000C+273.15=1373.15K

  n=10mol

Values of above constants for SO2 in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DSO25.6990.80101.015

  gas constant R in SI unit is 8.314JmolK

  τ=TT0=1373.15473.15=2.902

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)473.151373.15ΔCPRdT=5.699×473.15×(2.9021)+0.801×1032473.152(2.90221)+03473.153(2.90231)+1.015×105473.15(2.90212.902)473.151373.15ΔCPRdT=5653.533K

Now from equation (1),

  Q=RT0TΔ C PRdTQ=8.314JmolK×5653.533KQ=47003.4765Jmol 

Now,

  n=10molQ=47003.4765Jmol×10mol Q=470034.765J

(b)

Interpretation Introduction

Interpretation:

Heat transferred ( Q ) by propane on rise of temperature from 250 to 12000C

Concept Introduction :

The transfer of heat in steady-flow exchangers for a gas is given as:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

(b)

Expert Solution
Check Mark

Answer to Problem 4.1P

  1942106.848J

Explanation of Solution

Given information:

  T1=2000CT1=2500C+273.15=523.15K

  T2= 11000CT2= 12000C+273.15=1473.15K

  n=12mol

Values of above constants for propane in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DPropane1.21328.7858.8240

  gas constant R in SI unit is 8.314JmolK

  τ=TT0=1473.15523.15=2.816

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=1.213×523.15×(2.8161)+28.785×1032523.152(2.81621)+8.824×1063×523.153(2.81631)+0523.15(2.81612.816)T0TΔCPRdT=19466.23013K

Now from equation (1),

  Q=RT0TΔ C PRdTQ=8.314JmolK×19466.23013KQ=161842.2373Jmol 

Now,

  n=12molQ=161842.2373Jmol×12mol Q=1942106.848J

(c)

Interpretation Introduction

Interpretation:

Heat transferred ( Q ) by methane on rise of temperature from 100 to 8000C

Concept Introduction :

The transfer of heat in steady-flow exchangers for a gas is given as:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

(c)

Expert Solution
Check Mark

Answer to Problem 4.1P

  51153886.48J

Explanation of Solution

Given information:

  T1=1000CT1=1000C+273.15=373.15K

  T2= 8000CT2= 8000C+273.15=1073.15K

  m=20kg

Values of above constants for methane in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dmethane1.7029.0812.1640

  gas constant R in SI unit is 8.314JmolK

  τ=TT0=1073.15373.15=2.876

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=1.702×373.15×(2.8761)+9.081×1032373.152(2.87621)+2.164×1063×373.153(2.87631)+0373.15(2.87612.876)T0TΔCPRdT=4934.49807K

Now from equation (1),

  Q=RT0TΔ C PRdTQ=8.314JmolK×4934.49807KQ=41025.41696Jmol 

Now,

  m=20kgn=20000g16.04g/mol=1246.883molQ=41025.41696Jmol×1246.883mol Q=51153886.48J

(d)

Interpretation Introduction

Interpretation:

Heat transferred ( Q ) by n butane on rise of temperature from 150 to 11500C

Concept Introduction :

The transfer of heat in steady-flow exchangers for a gas is given as:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

(d)

Expert Solution
Check Mark

Answer to Problem 4.1P

  2107019.862J

Explanation of Solution

Given information:

  T1=1500CT1=1500C+273.15=423.15K

  T2= 11500CT2= 11500C+273.15=1423.15K

  n=10mol

Values of above constants for n butane in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dn-butane1.93536.91511.4020

  gas constant R in SI unit is 8.314JmolK

  τ=TT0=1423.15423.15=3.363

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=1.935×423.15×(3.3631)+36.915×1032423.152(3.36321)+11.402×1063×423.153(3.36331)+0423.15(3.36313.363)T0TΔCPRdT=25343.03418K

Now from equation (1),

  Q=RT0TΔ C PRdTQ=8.314JmolK×25343.03418KQ=210701.9862Jmol 

Now,

  n=10molQ=210701.9862Jmol×10mol Q=2107019.862J

(e)

Interpretation Introduction

Interpretation:

Heat transferred ( Q ) by air on rise of temperature from 25 to 10000C

Concept Introduction :

The transfer of heat in steady-flow exchangers for a gas is given as:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

(e)

Expert Solution
Check Mark

Answer to Problem 4.1P

  1064048522J

Explanation of Solution

Given information:

  T1=250CT1=250C+273.15=298.15K

  T2= 10000CT2= 10000C+273.15=1273.15K

  m=1000kg

Values of above constants for air in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dair3.3550.57500.016

  gas constant R in SI unit is 8.314JmolK

  τ=TT0=1073.15373.15=4.27017

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=3.355×298.15×(4.27011)+0.575×1032298.152(4.270121)+03×298.153(4.270131)+0.016298.15×(4.270114.2701)T0TΔCPRdT=3711.4995K

Now from equation (1),

  Q=RT0TΔ C PRdTQ=8.314JmolK×3711.4995KQ=30857.40715Jmol 

Now,

  m=1000kgn=1000×1000g29g/mol=34482.75862molQ=30857.40715Jmol ×34482.75862molQ=1064048522J

(f)

Interpretation Introduction

Interpretation:

Heat transferred ( Q ) by ammonia on rise of temperature from 100 to 8000C

Concept Introduction :

The transfer of heat in steady-flow exchangers for a gas is given as:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

(f)

Expert Solution
Check Mark

Answer to Problem 4.1P

  665290.495J

Explanation of Solution

Given information:

  T1=1000CT1=1000C+273.15=373.15K

  T2= 8000CT2= 8000C+273.15=1073.15K

  n=20mol

Values of above constants for ammonia in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dammonia3.5783.02000.186

  gas constant R in SI unit is 8.314JmolK

  τ=TT0=1073.15373.15=2.876

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=3.578×373.15×(2.8761)+3.020×1032373.152(2.87621)+03×373.153(2.87631)+0.186×105373.15(2.87612.876)T0TΔCPRdT=4001.025K

Now from equation (1),

  Q=RT0TΔ C PRdTQ=8.314JmolK×4001.025KQ=33264.525Jmol 

Now,

  n=20molQ=33264.525Jmol ×20mol Q=665290.495J

(g)

Interpretation Introduction

Interpretation:

Heat transferred ( Q ) by water on rise of temperature from 150 to 3000C

Concept Introduction :

The transfer of heat in steady-flow exchangers for a gas is given as:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

(g)

Expert Solution
Check Mark

Answer to Problem 4.1P

  52983.298J

Explanation of Solution

Given information:

  T1=1500CT1=1500C+273.15=423.15K

  T2= 3000CT2= 3000C+273.15=573.15K

  n=10mol

Values of above constants for water in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dwater3.4701.45000.121

  gas constant R in SI unit is 8.314JmolK

  τ=TT0=573.15423.15=1.355

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=3.470×423.15×(1.3551)+1.45×1032423.152(1.35521)+03×423.153(1.35531)+0.121×105423.15(1.35511.355)T0TΔCPRdT=637.278K

Now from equation (1),

  Q=RT0TΔ C PRdTQ=8.314JmolK×637.278KQ=5298.3298Jmol 

Now,

  n=10molQ=5298.3298Jmol ×10mol Q=52983.298J

(h)

Interpretation Introduction

Interpretation:

Heat transferred ( Q ) by chlorine on rise of temperature from 2000C to 5000C

Concept Introduction :

The transfer of heat in steady-flow exchangers for a gas is given as:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

(h)

Expert Solution
Check Mark

Answer to Problem 4.1P

  54910.861J

Explanation of Solution

Given information:

  T1=2000CT1=2000C+273.15=473.15K

  T2= 5000CT2= 5000C+273.15=773.15K

  n=5mol

Values of above constants for chlorine in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105DChlorine4.4420.08900.344

  gas constant R in SI unit is 8.314JmolK

  τ=TT0=773.15473.15=1.634

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)473.15773.15ΔCPRdT=4.442×473.15×(1.6341)+0.089×1032473.152(1.63421)+03473.153(1.63431)+0.344×105473.15(1.63411.634)473.15773.15ΔCPRdT=1320.925K

Now from equation (1),

  Q=RT0TΔ C PRdTQ=8.314JmolK×1320.925KQ=10982.172Jmol 

Now,

  n=5molQ=10982.172Jmol ×5mol Q=54910.861J

(i)

Interpretation Introduction

Interpretation:

Heat transferred ( Q ) by ethylbenzene on rise of temperature from 300 to 7000C

Concept Introduction :

The transfer of heat in steady-flow exchangers for a gas is given as:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

(i)

Expert Solution
Check Mark

Answer to Problem 4.1P

  10228945.09J

Explanation of Solution

Given information:

  T1=3000CT1=3000C+273.15=573.15K

  T2= 7000CT2= 7000C+273.15=973.15K

  m=10kg

Values of above constants for ethylbenzene in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dethylbenzene1.12455.38018.4760

  gas constant R in SI unit is 8.314JmolK

  τ=TT0=973.15573.15=1.698

Put values in equation (2)

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=1.124×573.15×(1.6981)+55.38×1032573.152(1.69821)+18.476×1063×573.153(1.69831)+0573.15(1.69811.698)T0TΔCPRdT=13062.39K

Now from equation (1),

  Q=RT0TΔ C PRdTQ=8.314JmolK×13062.39KQ=108600.71Jmol 

Now,

  m=10kgn=10000g106.17g/mol=94.189molQ=108600.71Jmol×94.189molQ=10228945.09J

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Do question 9 please! Question 7 Is just there for reference!!
7) You are tasked with separating two proteins by ion exchange chromatography on a 30 cm long column with an inner diameter of 2 cm. The resin has a diameter of 100 μm and a void fraction of 0.3, and your mobile phase flows through the column at a rate of Q = 5 cm³/min. The Van Deemter coefficients A, B, and C have been determined to be 0.0228 cm, 0.0036 cm²/min, and 0.00053 min, respectively, for both proteins. Protein A elutes from the column with an average retention time of 27 min and standard deviation of 0.8 min. Protein B elutes from the column. with an average retention time of 33.8 min and standard deviation of 1.0. a) How many theoretical plates does the column contain? b) What flow rate (Q) will give you the maximum resolution? c) What is the minimum height of a theoretical plate for the system?
4) A fixed bed adsorption unit contains rigid (incompressible) silica particles with a diameter of 120 um and porosity of 0.3. The resin bed is 200 cm long and has a diameter of 15 cm. A protein solution is pumped into the column at a rate of 50 L/min, and the mobile phase has a viscosity of 1.2 CP. a) What is the pressure drop for this system (in bar)? b) What would be the pressure drop if the particle diameter were decreased to 30 μm?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The