INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
8th Edition
ISBN: 9781260940961
Author: SMITH
Publisher: INTER MCG
Question
100%
Book Icon
Chapter 4, Problem 4.2P

(a)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the substance is to be calculated when some amount of heat is given to the to the substance

Concept Introduction :

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

(b)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the substance is to be calculated when 2500kJ of heat is given to 15mol of 1-butene

Concept Introduction :

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

(c)

Interpretation Introduction

Interpretation:

Final temperature (T2) of the substance is to be calculated when 106btu of heat is given to 40 lb mol of ethylene

Concept Introduction :

The final temperature is calculated from below equation where amount of heat is given:

  Q=nΔH=RT0TΔCPRdT......(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)......(2)

Where τ=TT0

Blurred answer
Students have asked these similar questions
4.59 Using the unilateral z-transform, solve the following difference equations with the given initial conditions. (a) y[n]-3y[n-1] = x[n], with x[n] = 4u[n], y[− 1] = 1 (b) y[n]-5y[n-1]+6y[n-2]= x[n], with x[n] = u[n], y[-1] = 3, y[-2]= 2 Ans. (a) y[n] = -2+9(3)", n ≥ -1 (b) y[n]=+8(2)" - (3)", n ≥ -2
(30) 6. In a process design, the following process streams must be cooled or heated: Stream No mCp Temperature In Temperature Out °C °C kW/°C 1 5 350 270 2 9 270 120 3 3 100 320 4 5 120 288 Use the MUMNE algorithm for heat exchanger networks with a minimum approach temperature of 20°C. (5) a. Determine the temperature interval diagram. (3) (2) (10) (10) b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and cold utilities. c. Determine the minimum number of heat exchangers above and below the pinch. d. Determine a valid heat exchange network above the pinch. e. Determine a valid heat exchange network below the pinch.
Use this equation to solve it.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The