University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.18DQ
“It’s not the fall that hurts you; it’s the sudden stop at the bottom.” Translate this saying into the language of Newton’s laws
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Earth exerts a gravitational force on the
Moon, keeping it in its orbit. The reaction to
this force, in the sense of Newton's third
law, is:"
O the centripetal force on the Moon
O the nearly circular orbit of the Moon
O the gravitational force on Earth by the Moon
O the tides due to the Moon
The planet Jupiter is more than 300 times as massive as Earth, so it might seem that a body on the surface of Jupiter would weigh 300 times as much as on Earth. But it so happens that a body would scarcely weigh 3 times as much on the surface of Jupiter as it would on the surface of Earth. Can you think of an explanation for why this is so? (Hint: Let the terms in the equation for gravitational force guide your thinking.)
You drop a tennis ball and a steel ball of the same size. Ignoring air
resistance, which has a greater force acting on it?
O Tennis ball
O Steel ball
O It depends upon which planet on which they are dropped
O Same force
O It depends upon the initial velocity
Chapter 4 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 4.1 - Figure 4.5 shows a force F acting on a crate. With...Ch. 4.2 - In which of the following situations is there zero...Ch. 4.3 - Rank the following situations in order of the...Ch. 4.4 - Prob. 4.4TYUCh. 4.5 - You are driving a car on a country road when a...Ch. 4 - Can a body be in equilibrium when only one force...Ch. 4 - A ball thrown straight up has zero velocity at its...Ch. 4 - A helium balloon hovers in midair, neither...Ch. 4 - When you fly in an airplane at night in smooth...Ch. 4 - If the two ends of a rope in equilibrium are...
Ch. 4 - You tie a brick lo the end of a rope and whirl the...Ch. 4 - When a car stops suddenly, the passengers tend to...Ch. 4 - Some people say that the force of inertia (or...Ch. 4 - A passenger in a moving bus with no windows...Ch. 4 - Suppose you chose the fundamental physical...Ch. 4 - Why is the earth only approximately an inertial...Ch. 4 - Does Newtons second law hold true for an observer...Ch. 4 - Some students refer to the quantity ma as the...Ch. 4 - The acceleration of a falling body is measured in...Ch. 4 - You can play catch with a softball in a bus moving...Ch. 4 - Students sometimes say that the force of gravity...Ch. 4 - Why can it hurt your foot more to kick a big rock...Ch. 4 - Its not the fall that hurts you; its the sudden...Ch. 4 - A person can dive into water from a height of 10 m...Ch. 4 - Why are cars designed to crumple in front and back...Ch. 4 - When a string barely strong enough lifts a heavy...Ch. 4 - A large crate is suspended from the end of a...Ch. 4 - Which feels a greater pull due to the earths...Ch. 4 - Why is it incorrect to say that 1.0 kg equals 2.2...Ch. 4 - A horse is hitched to a wagon. Since the wagon...Ch. 4 - True or false? You exert a push P on an object and...Ch. 4 - A large truck and a small compact car have a...Ch. 4 - When a car comes to a stop on a level highway,...Ch. 4 - A small compact car is pushing a large van that...Ch. 4 - Consider a tug-of-war between two people who pull...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A manual for student pilots contains this passage:...Ch. 4 - If your hands are wet and no towel is handy, you...Ch. 4 - If you squat down (such as when you examine the...Ch. 4 - When a car is hit from behind, the occupants may...Ch. 4 - In a head-on auto collision, passengers who are...Ch. 4 - In a head-on collision between a compact 1000-kg...Ch. 4 - Suppose you are in a rocket with no windows,...Ch. 4 - Two dogs pull horizontally on ropes attached to a...Ch. 4 - To extricate an SUV stuck in the mud, workmen use...Ch. 4 - BIO Jaw Injury. Due to a jaw injury, a patient...Ch. 4 - A man is dragging a trunk up the loading ramp of a...Ch. 4 - Forces F1 and F2act at a point. The magnitude of...Ch. 4 - An electron (mass = 9.11 1031 kg) leaves one end...Ch. 4 - A 68.5-kg skater moving initially at 2.40 m/s on...Ch. 4 - You walk into an elevator, step onto a scale, and...Ch. 4 - A box rests on a frozen pond, which serves as a...Ch. 4 - A dockworker applies a constant horizontal force...Ch. 4 - A hockey puck with mass 0.160 kg is at rest at the...Ch. 4 - A crate with mass 32.5 kg initially at rest on a...Ch. 4 - A 4.50-kg experimental cart undergoes an...Ch. 4 - A 2.75-kg cat moves in a straight line (the...Ch. 4 - A small 8.00-kg rocket burns fuel that exerts a...Ch. 4 - An astronauts pack weighs 17.5 N when she is on...Ch. 4 - Superman throws a 2400-N boulder at an adversary....Ch. 4 - BIO (a) An ordinary flea has a mass of 210 g. How...Ch. 4 - At the surface of Jupiters moon Io, the...Ch. 4 - A small car of mass 380 kg is pushing a large...Ch. 4 - BIO World-class sprinters can accelerate out of...Ch. 4 - The upward normal force exerted by the floor is...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A student of mass 45 kg jumps off a high diving...Ch. 4 - Section 4.6 Free-Body Diagrams 4.25Crates A and B...Ch. 4 - You pull horizontally on block B in Fig. F4.26,...Ch. 4 - A ball is hanging from a long siring that is tied...Ch. 4 - CP A .22-caliber rifle bullet traveling at 350 m/s...Ch. 4 - A chair of mass 12.0 kg is sitting on the...Ch. 4 - A large box containing your new computer sits on...Ch. 4 - CP A 5.60-kg bucket of water is accelerated upward...Ch. 4 - CP You have just landed on Planet X. You release a...Ch. 4 - Two adults and a child want to push a wheeled cart...Ch. 4 - CP An oil tankers engines have broken down, and...Ch. 4 - CP BIO A Standing Vertical Jump. Basketball player...Ch. 4 - CP An advertisement claims that a particular...Ch. 4 - BIO Human Biomechanics. The fastest pitched...Ch. 4 - BIO Human Biomechanics. The fastest served tennis...Ch. 4 - Two crates, one with mass 4.00 kg and the other...Ch. 4 - CP Two blocks connected by a light horizontal rope...Ch. 4 - CALC To study damage to aircraft that collide with...Ch. 4 - CP A 6.50-kg instrument is hanging by a vertical...Ch. 4 - BIO Insect Dynamics. The froghopper (Philaenus...Ch. 4 - A loaded elevator with very worn cables has a...Ch. 4 - CP After an annual checkup, you leave your...Ch. 4 - CP A nail in a pine board stops a 4.9-N hammer...Ch. 4 - CP Jumping to the Ground. A 75.0-kg man steps off...Ch. 4 - The two blocks in Fig. P4.48 are connected by a...Ch. 4 - CP Boxes A and B are connected to each end of a...Ch. 4 - CP Extraterrestrial Physics. You have landed on an...Ch. 4 - CP CALC A mysterious rocket-propelled object of...Ch. 4 - CALC The position of a training helicopter (weight...Ch. 4 - DATA The table gives automobile performance data...Ch. 4 - DATA An 8.00-kg box sits on a level floor. You...Ch. 4 - DATA You are a Starfleet captain going boldly...Ch. 4 - Prob. 4.56CPCh. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCERS BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - The forces on a dancer can be measured directly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
14. A rifle is aimed horizontally at a target 50 m away. The bullet hits the target 2.0 cm below the aim point....
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
The possible way to move so that normal force is greater than our weight.
College Physics: A Strategic Approach (3rd Edition)
If you lower the window on a car while moving, an empty plastic bag can sometimes fly out the window. Why does ...
College Physics
Attach day to the bottom left side of the board so that it remains at rest when placed horizontally on the pivo...
Tutorials in Introductory Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
The force, when you push against a wall with your fingers, they bend.
Conceptual Physics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why can we neglect forces such as those holding a body together when we apply Newton’s second law?arrow_forwardA person stands on a scale inside an elevator at rest. The scale reads 787 N. what is the person's mass? Calculate answer to one decimal. (use g=9.8 m/s^ 2arrow_forwardHello! I’m on this worksheet that’s talking about Newton’s Second Law. Can someone please help me understand this question and what it is asking me to do in order for me to solve it?arrow_forward
- newtons first law states that objects with more mass have stronger tendencies to maintain their original motion. Yet our centripetal force equation suggests that all masses will maintain a steady orbit provided that their tangenitial speed, v, is the correct match for their orbital radius, r. Provide a physical argument that explains why objects with larger inertias (masses) do not fly off. Is there something that counters this increase in inertia?arrow_forwardOn mars: In order for an astronaut to carry a repair to the observation satellite (mass 650 kg, altitude 400 km), the shuttle (mass approx. 6500 kg) must approach the satellite. It maintains a distance of about 150 m from the satellite. If the shuttle does not correct its distance between itself and the satellite, how long will it take before they touch? (Hint: uses the average force between the initial distance and a final distance of 1 cm)arrow_forwardThe ratio of an object's weight to its volume is: specific gravity specific weight density specific volume The acceleration due to gravity at the surface of the moon is approximately 1/6 of the earth's. The acceleration due to gravity at the surface of moon is equal to: 64 in/s2 5.4 m/s2 none of the above 1.6 ft/s2arrow_forward
- Which has more inertia, a passenger car traveling down the road or a freight train moving at the same speed? What do you think this means about the amount of force required to bring each to a stop? Which requires more effort to start rolling from rest, a golf ball or a bowling ball? Explain your answer in terms of inertia, acceleration and force. A person is riding a bicycle down a flat road in a straight line. Describe what will happen to the motion when the bicycle's breaks are applied. Be sure to include net force, acceleration, and inertia in your description.arrow_forwardYou hang a 1.0 kg mass from a spring scale like we did in a class demo. But this time, instead of holding your hand still so that the acceleration is zero, you let your arm drop so that the mass accelerates downward at 5.2 m/s2. What force (how many Newtons) will the spring scale read while this acceleration is happening assuming you are standing on the surface of Earth, so that the force on the 1.0 kg mass due to gravity is 9.8 Newtons?arrow_forwardGravitational force acts on all objects in proportion to their masses. Why then does a heavy object not fall faster than a light object?arrow_forward
- Consider a human who weighs 862 N on Earth. What is the person's mass on Earth? And what is the same person's mass on Mars, where the acceleration due to gravity is 3.7 m/s2?arrow_forwardOn Earth, a person has a weight of 520 N. What weight would the person have on Mars? Theradius of Mars is 53% of the radius of Earth, and its mass is 11% of the mass of Earth.arrow_forwardThe International Space Station (ISS) is in orbit travelling around the Earth very fast. Which statement most accurately describes why the astronauts feel weightless on board the ISS? Remember that gravity is what holds the ISS in orbit. Since the ISS is under the influence of gravity alone, it is in a state of continuous freefall as it orbits Earth, resulting in an apparent weight of zero. Since the ISS is in space (outside of Earth's atmosphere, there is no force from gravity so gravity does not act on objects inside the ISS, including the astronauts.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY