
Experiencing MIS
7th Edition
ISBN: 9780134380421
Author: KROENKE
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Expert Solution & Answer
Chapter 4, Problem 2ARQ
Explanation of Solution
New hardware affects the competitive strategies:
Generally, organizations get quite interested to use new hardware for their revenue generation based on potential opportunities or threats.
Internet of Things (IoT):
Internet of Things is a design where objects are linked with internet for interaction purposes. That is, interact with “devices”, “services”, or “applications”.
- Each and every day objects are embedded with hardware that used for “sensing”, “processing”, and “transmitting” data.
- Then objects are linked with internet to share the data with any other application, device, or service.
Smart device:
Smart device is a device which is added with extra features such as more processing power, more memory, Wi-Fi connectivity, net access, and so on.
Reason to use the smart devices:
- Nowadays, smart devices are essential. Because it is added with extra features such as more processing power, more memory, Wi-Fi connectivity, net access, and so on.
- People have started using smart phone much more than before.
- It helps to change the way of business operations.
- Business need to enhance the existing revenue with the help of smart devices.
Examples of how businesses could profit from smart device:
- One example is business from General Electric’s (GE) industrial internet.
- GE industrial internet is the broad plan which mainly focused to create the smart devices, investigating the data from these devices, and making changes to increase efficiencies, minimize the waste, and to enhance the decision making.
- The industry experiences huge profit by using smart devices in hospitals, railroads, power grids, and so on.
- Another example is business from Microsoft.
- Microsoft industry also made tremendous profits with the help of smart devices.
- The engineers from Microsoft were capable to minimize the energy cost and increase the profits.
Self-driving cars:
Self-driving cars is also known as driverless car.
- It uses the types of sensor to navigate the car without human intervention like traditional car...
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
My code is experincing minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place.
My code:
% Define frequency range for the plot
f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz
w = 2 * pi * f; % Angular frequency
% Parameters for the filters - let's adjust these to get more reasonable cutoffs
R = 1e3; % Resistance in ohms (1 kΩ)
C = 1e-6; % Capacitance in farads (1 μF)
% For bandpass, we need appropriate L value for desired cutoffs
L = 0.1; % Inductance in henries - adjusted for better bandpass response
% Calculate cutoff frequencies first to verify they're in desired range
f_cutoff_RC = 1 / (2 * pi * R * C);
f_resonance = 1 / (2 * pi * sqrt(L * C));
Q_factor = (1/R) * sqrt(L/C);
f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor));
f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor));
% Transfer functions
% Low-pass filter (RC)
H_low = 1 ./ (1 + 1i * w *…
I would like to know the main features about the following three concepts:
1. Default forwarded
2. WINS Server
3. IP Security (IPSec).
map the following ER diagram into a relational database schema diagram. you should take into account all the constraints in the ER diagram. Underline the primary key of each relation, and show each foreign key as a directed arrow from the referencing attributes (s) to the referenced relation.
NOTE: Need relational database schema diagram
Chapter 4 Solutions
Experiencing MIS
Ch. 4.2 - Prob. 1SWCh. 4.2 - Prob. 2SWCh. 4.2 - Prob. 3SWCh. 4.2 - Prob. 4SWCh. 4.2 - Prob. 5SWCh. 4.2 - Prob. 6SWCh. 4 - Prob. 1EGDQCh. 4 - Prob. 2EGDQCh. 4 - Prob. 3EGDQCh. 4 - Prob. 4EGDQ
Ch. 4 - Prob. 1GDQCh. 4 - Prob. 2GDQCh. 4 - Prob. 3GDQCh. 4 - Prob. 4GDQCh. 4 - Prob. 1ARQCh. 4 - Prob. 2ARQCh. 4 - Prob. 3ARQCh. 4 - Prob. 4ARQCh. 4 - Prob. 1UYKCh. 4 - Prob. 2UYKCh. 4 - Prob. 3UYKCh. 4 - Prob. 4CECh. 4 - Prob. 5CECh. 4 - Prob. 6CECh. 4 - Prob. 7CECh. 4 - Prob. 8CECh. 4 - Prob. 9CSCh. 4 - Prob. 10CSCh. 4 - Prob. 11CSCh. 4 - Prob. 12CSCh. 4 - Prob. 13CSCh. 4 - Prob. 14MMLCh. 4 - Prob. 15MML
Knowledge Booster
Similar questions
- What is business intelligence? Share the Business intelligence (BI) tools you have used and explain what types of decisions you made.arrow_forwardI need help fixing the minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place. My code: % Define frequency range for the plot f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz w = 2 * pi * f; % Angular frequency % Parameters for the filters - let's adjust these to get more reasonable cutoffs R = 1e3; % Resistance in ohms (1 kΩ) C = 1e-6; % Capacitance in farads (1 μF) % For bandpass, we need appropriate L value for desired cutoffs L = 0.1; % Inductance in henries - adjusted for better bandpass response % Calculate cutoff frequencies first to verify they're in desired range f_cutoff_RC = 1 / (2 * pi * R * C); f_resonance = 1 / (2 * pi * sqrt(L * C)); Q_factor = (1/R) * sqrt(L/C); f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor)); f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor)); % Transfer functions % Low-pass filter (RC) H_low = 1 ./ (1 + 1i * w *…arrow_forwardTask 3. i) Compare your results from Tasks 1 and 2. j) Repeat Tasks 1 and 2 for 500 and 5,000 elements. k) Summarize run-time results in the following table: Time/size n String StringBuilder 50 500 5,000arrow_forward
- Can you please solve this without AIarrow_forward1. Create a Vehicle.java file. Implement the public Vehicle and Car classes in Vehicle.java, including all the variables and methods in the UMLS. Vehicle - make: String model: String -year: int + Vehicle(String make, String, model, int, year) + getMake(): String + setMake(String make): void + getModel(): String + setModel(String model): void + getYear(): int + set Year(int year): void +toString(): String Car - numDoors: int + numberOfCar: int + Car(String make, String, model, int, year, int numDoors) + getNumDoors(): int + setNumDoors (int num Doors): void + toString(): String 2. Create a CarTest.java file. Implement a public CarTest class with a main method. In the main method, create one Car object and print the object using System.out.println(). Then, print the numberOfCar. Your printing result must follow the example output: make Toyota, model=Camry, year=2022 numDoors=4 1 Hint: You need to modify the toString methods in the Car class and Vehicle class!arrow_forwardCHATGPT GAVE ME WRONG ANSWER PLEASE HELParrow_forward
- HELP CHAT GPT GAVE ME WRONG ANSWER Consider the following implementation of a container that will be used in a concurrent environment. The container is supposed to be used like an indexed array, but provide thread-safe access to elements. struct concurrent_container { // Assume it’s called for any new instance soon before it’s ever used void concurrent_container() { init_mutex(&lock); } ~concurrent_container() { destroy_mutex(&lock); } // Returns element by its index. int get(int index) { lock.acquire(); if (index < 0 || index >= size) { return -1; } int result = data[index]; lock.release(); return result; } // Sets element by its index. void set(int index, int value) { lock.acquire(); if (index < 0 || index >= size) { resize(size); } data[index] = value; lock.release(); } // Extend maximum capacity of the…arrow_forwardWrite a C program using embedded assembler in which you use your own function to multiply by two without using the product. Tip: Just remember that multiplying by two in binary means shifting the number one place to the left. You can use the sample program from the previous exercise as a basis, which increments a variable. Just replace the INC instruction with SHL.arrow_forwardusing r languagearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Information SystemsComputer ScienceISBN:9781337097536Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningPrinciples of Information Security (MindTap Cours...Computer ScienceISBN:9781337102063Author:Michael E. Whitman, Herbert J. MattordPublisher:Cengage Learning
- Principles of Information Systems (MindTap Course...Computer ScienceISBN:9781305971776Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningEnhanced Discovering Computers 2017 (Shelly Cashm...Computer ScienceISBN:9781305657458Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. CampbellPublisher:Cengage LearningFundamentals of Information SystemsComputer ScienceISBN:9781305082168Author:Ralph Stair, George ReynoldsPublisher:Cengage Learning

Fundamentals of Information Systems
Computer Science
ISBN:9781337097536
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning

Principles of Information Security (MindTap Cours...
Computer Science
ISBN:9781337102063
Author:Michael E. Whitman, Herbert J. Mattord
Publisher:Cengage Learning

Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781305971776
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning

Enhanced Discovering Computers 2017 (Shelly Cashm...
Computer Science
ISBN:9781305657458
Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:Cengage Learning

Fundamentals of Information Systems
Computer Science
ISBN:9781305082168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning