Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 14PQ

An aircraft flies at constant altitude (with respect to sea level) over the South Rim of the Grand Canyon (Fig. P3.40, page 83). Consider a coordinate system such that the positive x axis points to the east, and the positive y axis points north. The aircraft’s initial position and velocity are 1350 m at an angle of 145° and 60.0 m/s at an angle of 55.0° where both angles are measured counterclockwise with respect to the positive x axis. The aircraft’s acceleration is 4.0 m/s2 at an angle of 195° with respect to the positive x axis. a. What is the velocity of the aircraft after 7.50 s have elapsed? b. What is the position vector of the aircraft after 7.50 s have elapsed?

(a)

Expert Solution
Check Mark
To determine

The velocity of the aircraft after 7.50 s have elapsed.

Answer to Problem 14PQ

The velocity of the aircraft after 7.50 s have elapsed is (1.08i^+39.6j^) m/s.

Explanation of Solution

An aircraft flies at constant altitude with initial position of 1350 m at an angle of 145° and velocity of 60.0 m/s at an angle of 55.0°. The acceleration of the aircraft is 4.0 m/s2 at an angle of 195°.

The two-dimensional motion of an object can be described using the components of a vector with magnitude and direction given by x=Acosθ and y=Asinθ.

The position of the aircraft is ri=(1350 m)cos145°i^+(1350 m)sin145°j^=(1110i^+774j^) m.

The velocity of the aircraft is vi=(60.0 m/s)cos55.0°i^+(60.0 m/s)sin55.0°j^=(34.4i^+49.1j^) m/s.

The acceleration of the aircraft is a=(4.90 m/s2)cos195°i^+(4.90 m/s2)sin195°j^=(4.73i^1.27j^) m/s2.

Write the formula for the velocity vector [two-dimensional kinematic equation]

    vf=vi+at (II)

Here, vf is the final velocity vector, vi is the initial velocity, t is time and a is the acceleration.

Conclusion:

Substitute (34.4i^+49.1j^) m/s for vi, 7.50 s for t and (4.73i^1.27j^) m/s2 for a in equation (II) to find the value of vf

vf=(34.4i^+49.1j^) m/s+(4.73i^1.27j^) m/s2×tvf=[34.4i^+49.1j^ 4.73ti^1.27tj^] m/svf=[(34.44.73×7.50)i^+(49.11.27×7.50)j^] m/svf=(1.08i^+39.6j^) m/s

Thus, the velocity of the aircraft after 7.50 s have elapsed is (1.08i^+39.6j^) m/s.

(b)

Expert Solution
Check Mark
To determine

The position of the aircraft after 7.50 s have elapsed.

Answer to Problem 14PQ

The position of the aircraft after 7.50 s have elapsed is (981i^+1110j^) m.

Explanation of Solution

Write the formula for the position vector [two-dimensional kinematic equation]

    r=ri+vit+12at2 (I)

Here, r is the final position vector and ri is the initial position of the object.

Conclusion:

Substitute (1110i^+774j^) m for ri, (34.4i^+49.1j^) m/s for vi, 7.50 s for t and (4.73i^1.27j^) m/s2 for a  in equation (I) to find the value of r

r=(1110i^+774j^) m+(34.4i^+49.1j^) m/s×7.50 s+12(4.73i^1.27j^) (7.50 s)2 mr=((1110+34.4×7.50+12(4.73)(7.50)2)i^+(774+49.1(7.50)+12(1.27)(7.50)2)j^) mr=(981i^+1110j^) m

Thus, The position of the aircraft after 7.50 s have elapsed is (981i^+1110j^) m.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3.90 ... CP A rocket designed to place small payloads into orbit is carried to an altitude of 12.0 km above sea level by a converted airliner. When the airliner is flying in a straight line at a constant speed of 850 km/h, the rocket is dropped. After the drop, the air- liner maintains the same altitude and speed and continues to fly in a straight line. The rocket falls for a brief time, after which its rocket motor turns on. Once its rocket motor is on, the combined effects of thrust and gravity give the rocket a constant acceleration of magnitude 3.00g directed at an angle of 30.0° above the hori- zontal. For reasons of safety, the rocket should be at least 1.00 km in front of the airliner when it climbs through the airliner's alti- tude. Your job is to determine the minimum time that the rocket must fall before its engine starts. You can ignore air resistance. Your answer should include (i) a diagram showing the flight paths of both the rocket and the airliner, labeled at several…
1. In an industrial fabrication process, a fluid, with density p = 800 kg/m and specific heat capacity c = 5000 J/kg-C°, emerges from a tank at a temperature, T, = 400 °C. The fluid then enters a metal pipe with inner radius a = 2.0 cm and outer radius b = 3.0 cm and thermal conductivity k = 180 W/m•C°. Outside the pipe the temperature is fixed at Tout = 15 °C. If the fluid flows at speed v = 8.0 m/s and the length of the pipe is L = 25 m, what is the temperature of the fluid at the end of the pipe? (Answer: 83 °C) please I need to show All work problems step by step
In an isothermal process, you are told that heat is being added to the system. Which of the following is not true? (a) The pressure of the gas is decreasing. (b) Work is being done on the system. (c) The average kinetic energy of the particles is remaining constant. (d) The volume of the gas is increasing. (e) Work is being done by the system.

Chapter 4 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 4 - A basketball player dribbles the ball while...Ch. 4 - A motion diagram of a bouncing ball is shown in...Ch. 4 - Prob. 6PQCh. 4 - Prob. 7PQCh. 4 - Figure P4.8 shows the motion diagram of two balls,...Ch. 4 - Prob. 9PQCh. 4 - Prob. 10PQCh. 4 - Prob. 11PQCh. 4 - If a particles speed is always increasing, what...Ch. 4 - Prob. 13PQCh. 4 - An aircraft flies at constant altitude (with...Ch. 4 - A glider is initially moving at a constant height...Ch. 4 - If the vector components of the position of a...Ch. 4 - A If the vector components of a particles position...Ch. 4 - Prob. 18PQCh. 4 - A The spiral is an example of a mathematical form...Ch. 4 - A circus performer stands on a platform and throws...Ch. 4 - Anthony carelessly rolls his toy car off a...Ch. 4 - A physics student stands on a second-story balcony...Ch. 4 - During the battle of Bunker Hill, Colonel William...Ch. 4 - A During the battle of Bunker Hill, Colonel...Ch. 4 - A softball is hit with an initial velocity of 29.0...Ch. 4 - Figure P4.8 shows the motion diagram of two balls....Ch. 4 - A circus performer throws an apple toward a hoop...Ch. 4 - An arrow is fired with initial velocity v0 at an...Ch. 4 - A rock is thrown horizontally off a 56.0-m-high...Ch. 4 - A projectile is launched up and to the right over...Ch. 4 - Sienna tosses a ball from the window of her...Ch. 4 - Some cats can be trained to jump from one location...Ch. 4 - Dock diving is a great form of athletic...Ch. 4 - A graduate student discovers that the only...Ch. 4 - The bola is a traditional weapon used for tripping...Ch. 4 - In three different driving tests, a car moves with...Ch. 4 - A child swings a tennis ball attached to a 0.750-m...Ch. 4 - A Two particles A and B move at a constant speed...Ch. 4 - Prob. 39PQCh. 4 - Prob. 40PQCh. 4 - Prob. 41PQCh. 4 - A pendulum constructed with a bowling ball at the...Ch. 4 - Prob. 43PQCh. 4 - Prob. 44PQCh. 4 - Pete and Sue, two reckless teenage drivers, are...Ch. 4 - Prob. 46PQCh. 4 - Prob. 47PQCh. 4 - A brother and sister, Alan and Beth, have just...Ch. 4 - A man paddles a canoe in a long, straight section...Ch. 4 - Prob. 50PQCh. 4 - Prob. 51PQCh. 4 - Prob. 52PQCh. 4 - Suppose at one point along the Nile River a...Ch. 4 - Prob. 54PQCh. 4 - Prob. 55PQCh. 4 - Prob. 56PQCh. 4 - Prob. 57PQCh. 4 - Two bicyclists in a sprint race begin from rest...Ch. 4 - A particle has a nonzero acceleration and a...Ch. 4 - A golfer hits his approach shot at an angle of...Ch. 4 - You are watching a friend practice archery when he...Ch. 4 - Prob. 62PQCh. 4 - Prob. 63PQCh. 4 - David Beckham has lined up for one of his famous...Ch. 4 - Prob. 65PQCh. 4 - Prob. 66PQCh. 4 - Prob. 67PQCh. 4 - Frequently, a weapon must be fired at a target...Ch. 4 - Prob. 69PQCh. 4 - Prob. 70PQCh. 4 - Prob. 71PQCh. 4 - An observer sitting on a park bench watches a...Ch. 4 - Prob. 73PQCh. 4 - Prob. 74PQCh. 4 - Prob. 75PQCh. 4 - Prob. 76PQCh. 4 - Prob. 77PQCh. 4 - Prob. 78PQCh. 4 - A circus cat has been trained to leap off a...Ch. 4 - Prob. 80PQCh. 4 - An experimentalist in a laboratory finds that a...Ch. 4 - Prob. 82PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY