Concept explainers
(a)
Write the position vector of the object as a function of time.
(a)
Answer to Problem 11PQ
The position vector of the object as a function of time is
Explanation of Solution
An object is moving with a initial velocity
Write the formula for the position vector [two-dimensional
Here,
Conclusion:
The initial position vector is
Substitute
Thus, the position vector of the object as a function of time is
(b)
Write the velocity vector of the object as a function of time.
(b)
Answer to Problem 11PQ
The velocity vector of the object as a function of time is
Explanation of Solution
Write the formula for the velocity vector [two-dimensional kinematic equation]
Here,
Conclusion:
Substitute
Thus, the velocity vector of the object as a function of time is
(c)
Write the position vector of the object at time
(c)
Answer to Problem 11PQ
The position vector of the object at time
Explanation of Solution
The position of the object after
Substitute
Thus, the position vector of the object at time
(d)
Write the speed of the object at time
(d)
Answer to Problem 11PQ
The speed of the object at time
Explanation of Solution
The velocity of the object after
Substitute
Thus, the velocity vector of the object at time
The speed of the object is
Thus, the speed of the object at time
Want to see more full solutions like this?
Chapter 4 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- Standing at the base of one of the cliffs of Mt. Arapiles in Victoria, Australia, a hiker hears a rock break loose from a height of 105 m. He can't see the rock right away but then does, 1.50 s later. (a) How far above the hiker is the rock when he can see it? (b) How much time does he have to move before the rock hits his head?arrow_forwardA cyclist rides 8.0 km east for 20 minutes, then he turns and heads west for 8 minutes and 3.2 km. Finally, he rides east for 16 km, which takes 40 minutes. (a) What is the final displacement of the cyclist? (b) What is his average velocity?arrow_forwardA train leaving Albuquerque travels 293 miles, due east, to Amarillo. The train spends a couple of days at the station in Amarillo and then heads back west 107 miles where it stops in Tucumcari. Suppose the positive x direction points to the east and Albuquerque is at the origin of this axis. a. What is the total distance traveled by the train from Albuquerque to Tucumcari? b. What is the displacement of the train for the entire journey? Give both answers in appropriate SI units.arrow_forward
- An express train passes through a station. It enters with an initial velocity of 22.0 m/s and decelerates at a rate of 0.150 m/s2 as it goes through. The station is 210 m long. (a) How long is the nose of the train in the station? (b) How fast is it going when the nose leaves the station? (c) If the train is 130 m long, when does the end of the train leave the station? (d) What is the velocity of the end of the train as it leaves?arrow_forwardAn object begins to move along the y axis and its position is given by the equation y=6t25t2, with y in meters and t in seconds, a. What is the position of the object when it changes its direction? b. What is the objects velocity when it returns to its original position?arrow_forwardA motorist drives for 35.0 minutes at 85.0 km/h and then stops for 15.0 minutes. He then continues north, traveling 130. Km in 2.00 h. (a) What is his total displacement? (b) What is his average velocity?arrow_forward
- (a) Calculate the height of a cliff if it takes 2.35 s for a rock to hit the ground when it is thrown straight up from the cliff with an initial velocity of 8.00 m/s. (b) How long would it take to reach the ground if it is thrown straight down with the same speed?arrow_forwardA particles position is given by z(t) = (7.50 m/s2) t2 for t 0. a. Find an expression for the particles velocity as a function of time. b. Is the particle speeding up, slowing down, or maintaining a constant speed? c. What are the particles position, velocity, and speed at t = 6.50 min?arrow_forwardA football quarterback is moving straight backward at a speed of 2.00 m/s when he throws a pass to a player 18.0 m straight downfield. (a) If the ball is thrown at an angle of 25° relative to the ground and is caught at the same height as it is released, what is its initial speed relative to the ground? (b) How long does it take to get to the receiver? (c) What is its maximum height above its point of release?arrow_forward
- A speedboat travels in a straight line and increases in speed uniformly from i = 20.0 m/s to f = 30.0 m/s in displacement x of 200 m. We wish to find the time interval required for the boat to move through this displacement, (a) Draw a coordinate system for this situation, (b) What analysis model is most appropriate for describing this situation? (c) From the analysis model, what equation is most appropriate for finding the acceleration of the speedboat? (d) Solve the equation selected in part (c) symbolically for the boats acceleration in terms of i, f, and x. (e) Substitute numerical values lo obtain the acceleration numerically. (f) Find the time interval mentioned above.arrow_forwardA model rocket is launched straight upward with an initial speed of 50.0 m/s. It accelerates with a constant upward acceleration of 2.00 m/s2 until its engines stop at an altitude of 150. m. (a) What can you say about, the motion of the rocket alter its engines stop? (b) What is the maximum height reached by the rocket? (c) How long after liftoff does the rocket reach its maximum height? (d) How long is the rocket in the air?arrow_forwardA police car traveling at 95.0 km/h is traveling west, chasing a motorist traveling at 80.0 km/h. (a) What is the velocity of the motorist relative to the police car? (b) What is the velocity of the police cat relative to the motorist? (c) If they are originally 250 m apart, in what time interval will the police car over take the motorist?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning