
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 47PQ
(a)
To determine
Explain how the observer can see a person in relative motion throwing a ball as superhuman action.
(b)
To determine
Can the baseball player observer his own fastball moving at
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A 0.500 kg sphere moving with a velocity given by (2.00î – 2.60ĵ + 1.00k) m/s strikes another sphere of mass 1.50 kg moving with an initial velocity of (−1.00î + 2.00ĵ – 3.20k) m/s.
(a) The velocity of the 0.500 kg sphere after the collision is (-0.90î + 3.00ĵ − 8.00k) m/s. Find the final velocity of the 1.50 kg sphere.
R =
m/s
Identify the kind of collision (elastic, inelastic, or perfectly inelastic).
○ elastic
O inelastic
O perfectly inelastic
(b) Now assume the velocity of the 0.500 kg sphere after the collision is (-0.250 + 0.850ĵ - 2.15k) m/s. Find the final velocity of the 1.50 kg sphere.
✓ =
m/s
Identify the kind of collision.
O elastic
O inelastic
O perfectly inelastic
(c) Take the velocity of the 0.500 kg sphere after the collision as (−1.00ỉ + 3.40] + ak) m/s. Find the value of a and the velocity of the 1.50 kg sphere after an elastic collision. (Two values of a are possible, a positive value and a negative value. Report each with their
corresponding final velocities.)
a…
A cannon is rigidly attached to a carriage, which can move along horizontal rails, but is connected to a post by a large spring, initially unstretched and with force constant k = 1.31 x 104 N/m, as in the figure below. The cannon fires a 200-kg projectile at a velocity of 136 m/s directed 45.0°
above the horizontal.
45.0°
(a) If the mass of the cannon and its carriage is 5000 kg, find the recoil speed of the cannon.
m/s
(b) Determine the maximum extension of the spring.
m
(c) Find the maximum force the spring exerts on the carriage. (Enter the magnitude of the force.)
N
launch angle.
Passage Problems
Alice (A), Bob (B), and Carrie (C) all start from their dorm and head
for the library for an evening study session. Alice takes a straight path,
Chapter 4 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 4.1 - CASE STUDY How Many Dimensions? In each case,...Ch. 4.2 - Based on the particles motion diagram in Figure...Ch. 4.3 - Prob. 4.3CECh. 4.5 - Prob. 4.4CECh. 4.5 - Prob. 4.5CECh. 4.6 - A particle travels at a uniform linear speed...Ch. 4.8 - Prob. 4.7CECh. 4 - Prob. 1PQCh. 4 - In each case, determine whether the object is...Ch. 4 - CASE STUDY Imagine an indoor tennis court on a...
Ch. 4 - A basketball player dribbles the ball while...Ch. 4 - A motion diagram of a bouncing ball is shown in...Ch. 4 - Prob. 6PQCh. 4 - Prob. 7PQCh. 4 - Figure P4.8 shows the motion diagram of two balls,...Ch. 4 - Prob. 9PQCh. 4 - Prob. 10PQCh. 4 - Prob. 11PQCh. 4 - If a particles speed is always increasing, what...Ch. 4 - Prob. 13PQCh. 4 - An aircraft flies at constant altitude (with...Ch. 4 - A glider is initially moving at a constant height...Ch. 4 - If the vector components of the position of a...Ch. 4 - A If the vector components of a particles position...Ch. 4 - Prob. 18PQCh. 4 - A The spiral is an example of a mathematical form...Ch. 4 - A circus performer stands on a platform and throws...Ch. 4 - Anthony carelessly rolls his toy car off a...Ch. 4 - A physics student stands on a second-story balcony...Ch. 4 - During the battle of Bunker Hill, Colonel William...Ch. 4 - A During the battle of Bunker Hill, Colonel...Ch. 4 - A softball is hit with an initial velocity of 29.0...Ch. 4 - Figure P4.8 shows the motion diagram of two balls....Ch. 4 - A circus performer throws an apple toward a hoop...Ch. 4 - An arrow is fired with initial velocity v0 at an...Ch. 4 - A rock is thrown horizontally off a 56.0-m-high...Ch. 4 - A projectile is launched up and to the right over...Ch. 4 - Sienna tosses a ball from the window of her...Ch. 4 - Some cats can be trained to jump from one location...Ch. 4 - Dock diving is a great form of athletic...Ch. 4 - A graduate student discovers that the only...Ch. 4 - The bola is a traditional weapon used for tripping...Ch. 4 - In three different driving tests, a car moves with...Ch. 4 - A child swings a tennis ball attached to a 0.750-m...Ch. 4 - A Two particles A and B move at a constant speed...Ch. 4 - Prob. 39PQCh. 4 - Prob. 40PQCh. 4 - Prob. 41PQCh. 4 - A pendulum constructed with a bowling ball at the...Ch. 4 - Prob. 43PQCh. 4 - Prob. 44PQCh. 4 - Pete and Sue, two reckless teenage drivers, are...Ch. 4 - Prob. 46PQCh. 4 - Prob. 47PQCh. 4 - A brother and sister, Alan and Beth, have just...Ch. 4 - A man paddles a canoe in a long, straight section...Ch. 4 - Prob. 50PQCh. 4 - Prob. 51PQCh. 4 - Prob. 52PQCh. 4 - Suppose at one point along the Nile River a...Ch. 4 - Prob. 54PQCh. 4 - Prob. 55PQCh. 4 - Prob. 56PQCh. 4 - Prob. 57PQCh. 4 - Two bicyclists in a sprint race begin from rest...Ch. 4 - A particle has a nonzero acceleration and a...Ch. 4 - A golfer hits his approach shot at an angle of...Ch. 4 - You are watching a friend practice archery when he...Ch. 4 - Prob. 62PQCh. 4 - Prob. 63PQCh. 4 - David Beckham has lined up for one of his famous...Ch. 4 - Prob. 65PQCh. 4 - Prob. 66PQCh. 4 - Prob. 67PQCh. 4 - Frequently, a weapon must be fired at a target...Ch. 4 - Prob. 69PQCh. 4 - Prob. 70PQCh. 4 - Prob. 71PQCh. 4 - An observer sitting on a park bench watches a...Ch. 4 - Prob. 73PQCh. 4 - Prob. 74PQCh. 4 - Prob. 75PQCh. 4 - Prob. 76PQCh. 4 - Prob. 77PQCh. 4 - Prob. 78PQCh. 4 - A circus cat has been trained to leap off a...Ch. 4 - Prob. 80PQCh. 4 - An experimentalist in a laboratory finds that a...Ch. 4 - Prob. 82PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- below the horizontal, and land 55 m horizontally from the end of the jump. Your job is to specify the slope of the ground so skiers' trajectories make an angle of only 3.0° with the ground on land- ing, ensuring their safety. What slope do you specify? T 9.5° -55 marrow_forwardMake sure to draw a sketch and a free body diagram. DO NOT give me examples but ONLY the solutionarrow_forwardMake sure to draw a sketch AND draw a Free body diagramarrow_forward
- P -3 ft 3 ft. O A B 1.5 ft Do 1.5 ft ✓ For the frame and loading shown, determine the magnitude of the reaction at C (in lb) if P = 55 lb. (Hint: Use the special cases: Two-force body and Three-force body.)arrow_forwardA convex mirror (f.=-6.20cm) and a concave minor (f2=8.10 cm) distance of 15.5cm are facing each other and are separated by a An object is placed between the mirrors and is 7.8cm from each mirror. Consider the light from the object that reflects first from the convex mirror and then from the concave mirror. What is the distance of the image (dia) produced by the concave mirror? cm.arrow_forwardAn amusement park spherical mirror shows park spherical mirror shows anyone who stands 2.80m in front of it an upright image one and a half times the person's height. What is the focal length of the minor? m.arrow_forward
- An m = 69.0-kg person running at an initial speed of v = 4.50 m/s jumps onto an M = 138-kg cart initially at rest (figure below). The person slides on the cart's top surface and finally comes to rest relative to the cart. The coefficient of kinetic friction between the person and the cart is 0.440. Friction between the cart and ground can be ignored. (Let the positive direction be to the right.) m M (a) Find the final velocity of the person and cart relative to the ground. (Indicate the direction with the sign of your answer.) m/s (b) Find the friction force acting on the person while he is sliding across the top surface of the cart. (Indicate the direction with the sign of your answer.) N (c) How long does the friction force act on the person? S (d) Find the change in momentum of the person. (Indicate the direction with the sign of your answer.) N.S Find the change in momentum of the cart. (Indicate the direction with the sign of your answer.) N.S (e) Determine the displacement of the…arrow_forwardSmall ice cubes, each of mass 5.60 g, slide down a frictionless track in a steady stream, as shown in the figure below. Starting from rest, each cube moves down through a net vertical distance of h = 1.50 m and leaves the bottom end of the track at an angle of 40.0° above the horizontal. At the highest point of its subsequent trajectory, the cube strikes a vertical wall and rebounds with half the speed it had upon impact. If 10 cubes strike the wall per second, what average force is exerted upon the wall? N ---direction--- ▾ ---direction--- to the top to the bottom to the left to the right 1.50 m 40.0°arrow_forwardThe magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below. F(N) 4 3 A 2 t(s) 1 2 3 45 (a) Find the impulse of the force over the 5.00-s time interval. == N⚫s (b) Find the final velocity the particle attains if it is originally at rest. m/s (c) Find its final velocity if its original velocity is -3.50 î m/s. V₁ m/s (d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s. = avg Narrow_forward
- ••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.arrow_forwardThor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.arrow_forwardIf the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Length contraction: the real explanation; Author: Fermilab;https://www.youtube.com/watch?v=-Poz_95_0RA;License: Standard YouTube License, CC-BY