Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39.2, Problem 39.3QQ
To determine
The change in the stopping potential in figure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
High-Energy Cancer Treatment.
Scientists are working on a new technique
to kill cancer cells by zapping them
with ultrahigh-energy (in the range of
1012 W) pulses of light that last for an
extremely short time (a few nanoseconds).
These short pulses scramble the interior
of a cell without causing it to explode, as
long pulses would do. We can model a
typical such cell as a disk in 3 mm
diameter, with the pulse lasting for 7 ns
with an average power of 7.4 x10¹2 W.
We shall assume that the energy is spread
uniformly over the faces of 100 cells for
each pulse. How much energy is given to
the cell during this pulse?
(answer in 2 decimal places and in
MegaJoule (MJ))
m, = 4px 107T. m/ A
c = 3 x 108 m/s
e 8.85 x 10-¹2 C²/Nm²
A limitation on how many spectra per second can be recorded by a time-of-flight mass spectrometer is the time it takes the slowest ion to go from the source to the detector. Suppose we want to scan up to m/z 500 for ions with z = 1. Calculate the speed of this heaviest ion if it is accelerated through 5.00 kV in the source. How long would it take to drift 2.00 m through a spectrometer? At what frequency could you record spectra if a new extraction cycle were begun each time the heaviest ion reached the detector? What would be the frequency if you wanted to scan up to m/z 1000?
1. a) What are the energy and momentum of a photon of red light of
wavelength 650 nm? (b) What is the wavelength of a photon of energy 2.40
eV?
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 39.1 - Prob. 39.1QQCh. 39.2 - Prob. 39.2QQCh. 39.2 - Prob. 39.3QQCh. 39.2 - Prob. 39.4QQCh. 39.3 - Prob. 39.5QQCh. 39.5 - Prob. 39.6QQCh. 39.6 - Prob. 39.7QQCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3P
Ch. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 35PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40APCh. 39 - Prob. 41APCh. 39 - Prob. 43APCh. 39 - Prob. 44APCh. 39 - Prob. 45APCh. 39 - Prob. 46APCh. 39 - Prob. 47CPCh. 39 - Prob. 48CPCh. 39 - Prob. 49CPCh. 39 - Prob. 50CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Fresh out of university you've been hired to do some photoelectron spectroscopy. You have a lamp that outputs an unknown wavelength of light. When the light is incident on a metal with a work function of 6.31 eV, you observe a stopping voltage equal to 4.21 V. What is the wavelength of the light? (unit in nm).arrow_forwardA pulsar is a rapidly spinning remnant of a supernova. It rotates on its axis, sweeping hydrogen along with it so that hydrogen on one side moves toward us as fast as 50.0 km/s, while that on the other side moves away as fast as 50.0 km/s. This means that the EM radiation we receive will be Dopplershifted over a range of ±50.0 km/s . What range of wavelengths will we observe for the 91.20-nm line in the Lyman series of hydrogen? (Such line broadening is observed and actually provides part of the evidence for rapid rotation.)arrow_forward(11%) Problem 7: Lasers can be constructed to produce an extremely high-intensity electromagnetic wave for a very brief time. Such lasers are called "pulsed lasers". They are used to ignite nuclear fusion, for example. Such a laser may produce an electromagnetic wave with a maximum electric field strength of 0.62 x 10 V/m for a time of 1.2 ns. Randomized Variables E, = 0.62 x 1011 V/m t = 1.2 ns E A 33% Part (a) What is the maximum magnetic field strength in the wave B0, in teslas? A 33% Part (b) What is the intensity of the beam I, in watts per square meter? D A 33% Part (c) How much energy, in kilojoules, does one pulse of the laser beam deliver to a 1.00 mm- area? Grade S E = Deductio Potentialarrow_forward
- Consider the four scenarios involving visible light. In scenario A, visible light has a wavelength of 729.9 nm.729.9 nm. Determine its frequency, energy per photon, and color. frequency: s−1−1 energy per photon: J The visible light in scenario A is In scenario B, visible light has a frequency of 5.695×1014 s−1.5.695×1014 s−1. Determine its wavelength, energy per photon, and color. wavelength: nm energy per photon: J The visible light in scenario B is In scenario C, visible light is in the middle of the yellow region of the visible spectrum. Estimate its wavelength, frequency, and energy per photon. wavelength: nm frequency: s−1−1 energy per photon: J In scenario D, visible light has a photon energy of 4.346×10−19 J.4.346×10−19 J. Determine its wavelength, frequency, and color. wavelength: nm frequency:…arrow_forwardBy Thomson's time, it was known that excited atoms emit light waves of only certain frequencies. In his model, the frequency of emitted light is the same as the oscillation frequency of the electron or electrons in the atom. What would the radius of a Thomson-model atom have to be for it to produce red light of frequency 4.55×1014 HzHz ? (see Appendix FF from the textbook for data about the electron)arrow_forwardHigh-power lasers are used to compress a plasma (a gas of charged particles) by radiation pressure. A laser generating radiation pulses with peak power 1900 MW is focused onto 1.2 mm2 of high-electron-density plasma. Find the pressure exerted on the plasma if the plasma reflects all the light beams directly back along their paths. Number i 1.2E5 * Units N/m^2 or Paarrow_forward
- Recall that the threshold frequency (νthreshold) for a metal is related it the metal's work function (Φ) by Eminimum= Φ = hνthreshold. For a particular metal, Φ is 7.70×10-19 J. What is the longest wavelength of electromagnetic radiation that can eject an electron from the surface of a piece of the metal? In nm If light has a wavelength of 635 nm, what is the energy of this light expressed with units of kJ/mol? A beam of radiation has an energy of 2.95×102 kJ/mol. What is the wavelength of this light? In nmarrow_forward19). To get a de Broglie wave that is visible to human eyes (size-wise, not visibility-wise, so A > 0.1 mm), of an particle, what particle should it be and what is the greatest speed it can be moving? Table 33.2 may be helpful.arrow_forwardAn x-ray source generates EM radiation with a wavelength of 45.0 pm (10-12 m). h = c = qelectron = e = 1.602x10-19 C, ke = 8.99x109 N·m2/C2, What is the energy associated with this x-ray wave? What potential difference must be applied to the electrons in the x-ray tube to produce this x-ray? The air gap in the x-ray tube is 30.0 μ How much charge must be present on the plates to create this potential difference for a single electron? What is the force on a single electron when it is at 30.0 μm from the positive plate?arrow_forward
- (a) Calculate the number of photoelectrons per second that are ejected from a 1.00-mm2 area of sodium metal by a 500-nm radiation with intensity I .30kW/m2 (the intensity of sunlight above Earth’s atmosphere). (b) Given the work function of the metal as 2.28 eV, what power is carried away by these photoelectrons?arrow_forwardA 900-W microwave generator in an oven generates energy quanta of frequency 2560 MHz. (a) How many energy quanta does it emit per second? (b) How many energy quanta must be absorbed by a pasta dish placed in the radiation cavity to increase its temperature by 45.0 K? Assume that the dish has a mass of 0.5 kg and that its specific heat is 0.9 kcal/kg • K. (c) Assume that all energy quanta emitted by the generator are absorbed by the pasta dish. How long must we wait until the dish in (b) is ready?arrow_forwardFigure P24.52 shows portions of the energy-level diagrams of the helium and neon atoms. An electrical discharge excites the He atom from its ground state (arbitrarily assigned the energy E1 = 0) to its excited state of 20.61 eV. The excited He atom collides with a Ne atom in its ground state and excites this atom to the state at 20.66 eV. Lasing action takes place for electron transitions from E3 to E2 in the Ne atoms. From the data in the figure, show that the wavelength of the red HeNe laser light is approximately 633 nm. Figure P24.52arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning