Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 31P
To determine
The reason the given situation of diffraction of a student is impossible.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Why is the following situation impossible? After learning about de Broglie’s hypothesis that material particles of momentum p move as waves with wavelength λ = h/p, an 80-kg student has grown concerned about being diffracted when passing through a doorway of width w = 75 cm. Assume significant diffraction occurs when the width of the diffraction aperture is less than ten times the wavelength of the wave being diffracted. Together with his classmates, the student performs precision experiments and finds that he does indeed experience measurable diffraction.
After learning about de Broglie's hypothesis that material particles of momentum p move as waves with
wavelength = h/p, an 80.0-kg student has grown concerned about being diffracted when passing through a
75.0-cmwide doorway. Assume significant diffraction occurs when the width of the diffraction aperture is
less that 10.0 times the wavelength of the wave being diffracted. (a) Determine the maximum speed at
which the student can pass through the doorway if he is to be significantly diffracted. (b) With that speed,
over what time interval does the student pass through the doorway if it is in a wall 15.0 cm thick? State how
your answer compares with the age of the Universe, which is about 4 x 10¹7 s.
In a photoelectric effect experiment, it is found
that no current flows unless the incident light has
a wavelength shorter than 359 nm nm.
What stopping potential will be needed to halt the
current if light of 225 nm falls on the surface?
Express your answer with the appropriate units.
μA
2.249
V
Vo
=
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 39.1 - Prob. 39.1QQCh. 39.2 - Prob. 39.2QQCh. 39.2 - Prob. 39.3QQCh. 39.2 - Prob. 39.4QQCh. 39.3 - Prob. 39.5QQCh. 39.5 - Prob. 39.6QQCh. 39.6 - Prob. 39.7QQCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3P
Ch. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 35PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40APCh. 39 - Prob. 41APCh. 39 - Prob. 43APCh. 39 - Prob. 44APCh. 39 - Prob. 45APCh. 39 - Prob. 46APCh. 39 - Prob. 47CPCh. 39 - Prob. 48CPCh. 39 - Prob. 49CPCh. 39 - Prob. 50CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the energy of an electron whose de Brogue wavelength is that of a photon of yellow light with wavelength 590 nm? (b) What is the de Brogue wavelength of an electron whose energy is that of the photon of yellow light?arrow_forwardA single beam of electrons shines on a single slit of width 3.3nm. A diffraction pattern (of electrons!) is formed on a screen that is 2.1m away from the slit. The distance between the central bright spot and the first minimum is 2.1cm.What is the speed (m/s) of the electrons?Make use of the small angle approximation.arrow_forwardA neutron of mass 1.675 × 10-27 kg has a de Broglie wavelength of 7.8x10-12 m. What is the kinetic energy (in eV) of this non-relativistic neutron? Please give your answer with two decimal places. 1 eV = 1.60 × 10-19 J, h = 6.626 × 10-34 J ∙ s.arrow_forward
- A single beam of electrons shines on a single slit of width 8.7nm. A diffraction pattern (of electrons!) is formed on a screen that is 3.9m away from the slit. The distance between the central bright spot and the first minimum is 5.7cm.What is the kinetic energy (keV, i.e. kilo electron-Volts) of the electrons?Make use of the small angle approximation.arrow_forwardWhat is the threshold frequency for the photoelectric effect on lithium (f 2.93 eV)? What is the stopping potential if the wavelength of the incident light is 380 nm?arrow_forwardA beam of electrons is accelerated from rest through a potential difference of 0.100 kV and then passes through a thin slit. When viewed far from the slit, the diffracted beam shows its first minimum at ± 14.6° from the original direction of the beam. A) What is the velocity of the electrons? B) What is the de Broglie wavelength of the electrons?arrow_forward
- An electron beam is shot through 2 thin slits with spacing 4.000 x 10-6 m and land on a detector 2.50 m away. The detector is 1.00 cm wide. You observe that the spacing of interference fringes is 8.25 x 10-6 m. (a) What is the wavelength of the electrons? (b) What is the momentum of the electrons? (c) What is the uncertainty in the momentum? (Hint: assume that the uncertainty in position is the width of the detector.)arrow_forwardThrough what potential difference ΔVΔV must electrons be accelerated (from rest) so that they will have the same wavelength as an x-ray of wavelength 0.130 nmnm? Use 6.626×10−34 J⋅sJ⋅s for Planck's constant, 9.109×10−31 kgkg for the mass of an electron, and 1.602×10−19 CC for the charge on an electron. Express your answer using three significant figures. =89.0 V Through what potential difference ΔVΔV must electrons be accelerated so they will have the same energy as the x-ray in Part A? Use 6.626×10−34 J⋅sJ⋅s for Planck's constant, 3.00×108 m/sm/s for the speed of light in a vacuum, and 1.602×10−19 CC for the charge on an electron. Express your answer using three significant figures. Second question is what I need help on! Thanks!arrow_forwardA simple cubic crystal is cut so that the rows of atoms on its surface are separated by a distance of 0.352 nm. A beam of electrons is accelerated through a potential difference of 175 V and is incident on the surface. If all diffraction orders are possible, at what angles, relative to the crystal surface, would the diffracted beams be observed? me = 9.11 x 10-31 kg. 5.arrow_forward
- PART A: A metal surface is illuminated with photons with a frequency f=1.5×10^15 Hz. The stopping potential for electrons photoemitted from the surface is 3.6 V. What is the work function of the metal? Answer= 2.6 eV PART B: A certain metal has a work function ϕ. What is the maximum photon wavelength that will produce photoemission? Express your answer in terms of ϕ,Planck's constant h, and the speed of light c. Answer= λ =hc/ϕ PART C: Electrons emitted from a metal surface with a work function ϕ = 2.8 eV have a corresponding stopping potential of V0 = 3.6 V. If a metal with a work functionϕnew = 2.2 eV is illuminated by the same wavelength of light, what will be the new stopping potential? Express your answer with the appropriate units. *Please answer Part C*arrow_forwardWhat is the momentum p1 of a photon if its wavelength is 530 nm? p1 = ? kg·m/s What is the momentum p2 of a photon if its wavelength is 0.0541 nm? p2 = ? kg·m/sarrow_forwardDe Broglie postulated that the relationship ? = h/p is valid for relativistic particles. What is the de Broglie wavelength for a (relativistic) electron having a kinetic energy of 3.31 MeV? answer in marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax