Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 15P
To determine
The value of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 25.0-pm x-ray photon scatters off a free electron at A
(Fig. P27.26), producing a photon of wavelength A' traveling at
an angle 0 = 40.0° relative to the first photon's direction. This
second photon scatters off another free electron at B, produc-
ing a photon with wavelength A" and moving in a direction
directly opposite the first photon. Determine the wavelengths
(a) A' and (b) A".
Electron 1
A"
Electron 2
Figure P27.26
Ex1/ A photon with momentum p = 1.02 MeV/c is scattered by a stationary free
electron. Its momentum on scattering becomes p' = 0.255 MeV/c. At what angle
is the photon scattered?
Ex2/ A photon is scattered at an angle =120° by a stationary free electron. As a
result the electron acquires a kinetic energy
of the incident photon.
T = 0.45 MeV. Find the energy
What is the momentum p1 of a photon if its wavelength is 530 nm?
p1 = ? kg·m/s
What is the momentum p2 of a photon if its wavelength is 0.0541 nm?
p2 = ? kg·m/s
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 39.1 - Prob. 39.1QQCh. 39.2 - Prob. 39.2QQCh. 39.2 - Prob. 39.3QQCh. 39.2 - Prob. 39.4QQCh. 39.3 - Prob. 39.5QQCh. 39.5 - Prob. 39.6QQCh. 39.6 - Prob. 39.7QQCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3P
Ch. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 35PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40APCh. 39 - Prob. 41APCh. 39 - Prob. 43APCh. 39 - Prob. 44APCh. 39 - Prob. 45APCh. 39 - Prob. 46APCh. 39 - Prob. 47CPCh. 39 - Prob. 48CPCh. 39 - Prob. 49CPCh. 39 - Prob. 50CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You want to use a microscope to study the structure of a mitochondrion about 1.00 um in size. To be able to observe small details within the mitochondrion, you want to use a wavelength of 0.0500 nm. If your microscope uses light of this wavelength, what is the momentum p of a photon? p = kg-m/s If your microscope uses light of this wavelength, what is the energy E of a photon? E = If instead your microscope uses electrons of this de Broglie wavelength, what is the momentum p. of an electron? Pe = kg-m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the velocity v of an electron? v = m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the kinetic energy K of an electron? K = What advantage do your calculations suggest electrons have compared to photons? O An electron's charge allows it to attach to observed particles, whereas a photon's electric neutrality prevents it from moving close enough to the observed particles…arrow_forwardA 2.0-kg object falls from a height of 5.0 m to the ground. If all the gravitational potential energy of this mass could be converted to visible light of wavelength 5.0 × 10−7 m, how many photons would be produced?arrow_forwardA hydrogen atom on the surface of the sun radiates a photon with wavelength 1800 nm. The sun has a radius, Tsun = 6.96 × 108 m, and a mass, Msun = 1.99 × 10³⁰ kg. (a) Calculate the change in wavelength when the photon is observed a long way - effectively at an infinite distance from the sun (or any other massive object). (b) How fast and in what direction would the observer have to move in order to cancel this change in wavelength?arrow_forward
- 1. a) What are the energy and momentum of a photon of red light of wavelength 650 nm? (b) What is the wavelength of a photon of energy 2.40 eV?arrow_forwardA 2.0 - kg object falls from a height of 5.0 m to the ground. If the change in the object’s kinetic energy could be converted to visible light of wavelength 5.0 x 10-7 m, how many photons would be produced?arrow_forwardA helium‑neon laser produces light of wavelength 632.8 nm. The laser beam carries a power of 0.75 mW and strikes a target perpendicular to the beam. How many photons per second, n, strike the target? n = ? photons/s At what rate R does the laser beam deliver linear momentum to the target if the photons are all absorbed by the target? R = ? kg·m/s2arrow_forward
- The energy in eV of a photon, if the frequency of the radiation is 7 × 10¹ Hz is 4.0 eV 3.9 eV (a) (c) (b) 2.9 eV (d) 1.9 eVarrow_forwardLight of wavelength 211 nm is shone on gold, which has a work function of 5.31 eV. What is the maximum kinetic energy (in eV) of the electrons emitted from the metal? Assume the light is traveling through a vacuum.arrow_forwardA photon having wavelength l scatters off a free electron at A (as shown), producing a second photon having wavelength λ'. This photon then scatters off another free electron at B, producing a third photon having wavelength λ''and moving in a direction directly opposite the original photon as shown in the figure. Determine the value of Δλ = λ'' -λ.arrow_forward
- Find the energy of the following. Express your answers in units of electron volts, noting that 1 eV = 1.60 x 10-19 J. (a) a photon having a frequency of 3.40 x 1017 Hz 1.41e-31 Calculate the energy of a photon at the given frequency and express your answer in electron volts. eV (b) a photon having a wavelength of 8.20 x 102 nm 2.43e-29 Calculate the frequency of light corresponding to the given wavelength and from the frequency calculate the energy of a photon with that wavelength. eVarrow_forward(a) How many minutes does it take a photon to travel from the Sun to the Earth? 8.32 It can be useful to remember that light travels from the Sun to Earth in about 8.32 minutes. min (b) What is the energy in eV of a photon with a wavelength of 628 nm? 1.98 eV (c) What is the wavelength (in m) of a photon with an energy of 1.13 eV? 1.76*10**-6arrow_forwardThe green light emitted by a stoplight has a wavelength of 505 nm. What is the frequency of this photon? (c = 3.00 × 10⁸ m/s).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning