Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 24P
(a)
To determine
The amplitude of the electric field of the helium-neon laser.
(b)
To determine
The amplitude of the magnetic field of the helium-neon laser.
(c)
To determine
The force exerted by the beam on a perfectly reflecting surface when it is incident perpendicularly.
(d)
To determine
The mass of the ice melted if the beam of laser is absorbed by an ice cube.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A helium–neon laser produces a beam of diameter 1.75 mm, delivering 2.00 × 1018 photons/s. Each photon has a wavelength of 633 nm. Calculate the amplitudes of (a) the electric fields and (b) the magnetic fields inside the beam. (c) If the beam shines perpendicularly onto a perfectly reflecting surface, what force does it exert on the surface? (d) If the beam is absorbed by a block of ice at 0°C for 1.50 h, what mass of ice is melted?
A helium-neon laser produces a beam of diameter 1.75 mm, delivering
3.15 x 1018 photons/s. Each photon has a wavelength of 633 nm.
(a) Calculate the amplitude of the electric field inside the beam.
kv/m
(b) Calculate the amplitude of the magnetic field inside the beam.
μT
(c) If the beam shines perpendicularly onto a perfectly reflecting
surface, what force does it exert on the surface?
nN
(d) If the beam is absorbed by a block of ice at 0°C for 2.10 h, what
mass of ice is melted?
g
A laser emits 5.67 × 101⁹ photons per second in a beam of light that has a diameter of 2.88 mm and a wavelength of 514.5 nm.
Determine (a) the average electric field strength and (b) the average magnetic field strength for the electromagnetic wave that
constitutes the beam.
(a) Number i
(b) Number i
Units
Units
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 39.1 - Prob. 39.1QQCh. 39.2 - Prob. 39.2QQCh. 39.2 - Prob. 39.3QQCh. 39.2 - Prob. 39.4QQCh. 39.3 - Prob. 39.5QQCh. 39.5 - Prob. 39.6QQCh. 39.6 - Prob. 39.7QQCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3P
Ch. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 35PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40APCh. 39 - Prob. 41APCh. 39 - Prob. 43APCh. 39 - Prob. 44APCh. 39 - Prob. 45APCh. 39 - Prob. 46APCh. 39 - Prob. 47CPCh. 39 - Prob. 48CPCh. 39 - Prob. 49CPCh. 39 - Prob. 50CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that the energy E in eV of a photon is given by E=1.241106 m/A. where A is its wavelength in meters.arrow_forwardenergy flux of sunlight reaching the surface of the earth is 1.388 x 10^3 W/m^2. How many photons (nearly) per square meter are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of 550 nm.arrow_forwardA helium-neon laser produces a beam of diameter 1.75 mm, delivering 1.05 x 1018 photons/s. Each photon has a wavelength of 633 nm. (a) Calculate the amplitude of the electric field inside the beam. 14 How much total energy is delivered by the beam in one second? kV/m (b) Calculate the amplitude of the magnetic field inside the beam. PT (c) If the beam shines perpendicularly onto a perfectly reflecting surface, what force does it exert on the surface? nN (d) If the beam is absorbed by a block of ice at 0°C for 1.20 h, what mass of ice is melted?arrow_forward
- The intensity of electromagnetic radiation from the sun reaching the earth’s upper atmosphere is 1.37 kW/m2. Assuming an average wavelength of 680 nm for this radiation, find the number of photons per second that strike a 1.00 m2 solar panel directly facing the sun on an orbiting satellite.arrow_forwardThe energy flux of sunlight reaching the surface of the earth is 1.388 × 103 W/m2. How many photons (nearly) per square metre are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of 550 nm.arrow_forwardThe average threshold of dark-adapted (scotopic) vision is 4.00 x 10-11 W/m? at a central wavelength of 500 nm. If light having this intensity and wavelength enters the eye and the pupil is open to its maximum diameter of 8.50 mm, how many photons per second enter the eye?arrow_forward
- A dental X-ray typically affects 195 g of tissue and delivers about 3.85 µJ of energy using X-rays that have wavelengths of 0.0255 nm. What is the energy in electron volts of a single photon of these X-rays? energy of a photon: How many photons are absorbed during the dental X-ray? number of photons absorbed: eV photonsarrow_forwardA typical Blu-Ray player uses a gallium nitride (GaN) diode laser with a wavelength of 405.0 nm. What is the energy (in J) of one Blu-Ray photon?arrow_forward(a) A certain X-ray photon has a wavelength of 18 nm. Calculate the frequency (υ) of this type of radiation. The speed of light, c = 2.998 x 108 m/s (b) Do you expect the frequency of photon of blue color light to be greater than, less than, or the same as the frequency of this X-ray photon? Explain your reasoning.arrow_forward
- What is the energy (in eV) of the following photons? A 450-nm photon of blue light?arrow_forwardA 633 nm helium-neon laser puts out 4.00 W of power with a beam 5.70 mm in diameter. The beam is pointed directly at a pinhole which has a diameter of 1.80 mm. How many photons of light will travel through the pinhole per second? Assume that the intensity of the light is equally distributed across the whole area of the beam. number of photons per second: photons/sarrow_forward(a) How many minutes does it take a photon to travel from the Sun to the Earth? 8.32 It can be useful to remember that light travels from the Sun to Earth in about 8.32 minutes. min (b) What is the energy in eV of a photon with a wavelength of 628 nm? 1.98 eV (c) What is the wavelength (in m) of a photon with an energy of 1.13 eV? 1.76*10**-6arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax