Concept explainers
(a)
The order of magnitude of the wavelength of the thermally produced photons in lightning and thunder.
(a)
Answer to Problem 1P
The order of magnitude of the wavelength of the thermally produced photons in lightning is
Explanation of Solution
Write the expression for Wein’s displacement law.
Here,
Rewrite equation (I) to find the order of the wavelength.
Conclusion:
Substitute
Substitute
Thus, the order of magnitude of the wavelength of the thermally produced photons in lightning is
(b)
The region in the spectrum where the lightning and thunder will
(b)
Answer to Problem 1P
The lightning radiate more strongly in the ultraviolet region whereas the thunder radiate more strongly in the x-ray and the gamma ray region.
Explanation of Solution
Lightning have the wavelength in the order
Thunder have the wavelength in the order
Conclusion:
Thus, the lightning radiate more strongly in the ultraviolet region whereas the thunder radiate more strongly in the x-ray and the gamma ray region.
Want to see more full solutions like this?
Chapter 39 Solutions
Physics for Scientists and Engineers with Modern Physics
- Treat the human body as a blackbody and determine the percentage increase in the total power of its radiation when its temperature increases from 98.6 °F to 103 ° F.arrow_forward) a) What temperature is required for a black body spectrum to peak in the X-ray band? (Assume that E = 1 keV). What is the frequency and wavelength of a 1 keV photon? b) What is one example of an astrophysical phenomenon that emits black body radiation that peaks near 1 keV? c) What temperature is required for a black body spectrum to peak in the gamma-ray band with E = 1 GeV? What is the frequency and wavelength of a 1 GeV photon? d) What is one example of an astrophysical phenomenon that emits black body radiation that peaks at 1 GeV?arrow_forwardSuppose a star with radius 8.57 × 108 m has a peak wavelength of 680 nm in the spectrum of its emitted radiation. (a) Find the energy of a photon with this wavelength. J/photon (b) What is the surface temperature of the star? K (c) At what rate is energy emitted from the star in the form of radiation? Assume the star is a blackbody (e = 1). W (d) Using the answer to part (a), estimate the rate at which photons leave the surface of the star. photons/sarrow_forward
- Photons of a certain ultraviolet light have an energy of 6.04 10-19 J. (a) What is the frequency of this UV light? (b) Use ? = c/f to calculate its wavelength in nanometers (nm).arrow_forward(a) The air immediately surrounding a certain lightning bolt in a thunderstorm is briefly heated to a temperature of 8.90 ✕ 103 K. Assuming the affected air behaves like a blackbody, what is the wavelength (in nm) of the photons emitted with the greatest intensity? ?max = answer in nm In which band of the electromagnetic spectrum does the air most strongly radiate? gamma ray / x-rayultraviolet visibleinfraredmicrowaveradio wave (b) The air immediately surrounding the detonation of a certain nuclear weapon is heated to a temperature of 9.90 ✕ 106 K.Assuming the heated air behaves like a blackbody, what is the wavelength (in pm) of the photons emitted with the greatest intensity? ?max = answer in pm In which band of the electromagnetic spectrum does the air most strongly radiate? gamma ray / x-rayultraviolet visibleinfraredmicrowaveradio wavearrow_forwardSuppose an infrared photon has a frequency of 2.2 × 1013 Hz. Part (a) Calculate the energy, in electron volt, of the infrared photon. Part (b) How many of these photons would need to be absorbed simultaneously by a molecule with binding energy 10.0 eV to break it apart? Part (c) What is the energy, in electron volts, of a γ-ray of frequency 2.95 × 1020 Hz? Part (d) What is the largest number of the molecules from part (b) that a single such γ-ray could break apart?arrow_forward
- Photons of a certain infrared light have an energy of 1.05 10-19 J. (a) What is the frequency of this IR light? (b) Use ? = c/f to calculate its wavelength in nanometers.arrow_forwardThe Earth has an average surface temperature of 288K and the Sun has an average surface temperature of 5800K. Assume them to be black bodies. If the only radiation that either black body emitted was at it's peak wavelength how many more photons would Earth need to radiation than receive in order for the climate to be stable.arrow_forwardyou are sitting at a desk in a completely dark room. the room is at normal indoor room temperature. there is an inanimate and un-powered object on your desk (e.g., a box, pencil case, notebook,...). what wavelength of blackbody radiation is emitted from that object with greatest intensity? (assume the object has the same temperature as the rest of the room.) express your answer in microns.arrow_forward
- A glass plate has a mass of 0.50 kg and a specific heat capacity of 840 J/(kg-C). The wavelength of infrared light is 14 x 10 m, while the wavelength of blue light is 4.7 x 107m. Find the number of infrared photons and the number of blue photons needed to raise the temperature of the glass plate by 2.0 °C, assuming that all the photons are absorbed by the glass. Nudrored Number Units Nyisible - Number Unitsarrow_forwardIn the spectrum described below, lines are indicated that were created as a result of photon emission due to electronic transitions in a hydrogen-like atom (that is, an atom in which there is only one electron). It is a given that all the lines in the current spectrum were created due to the return of an electron from some excited state to the ground state. Given that the frequency of a photon belonging to line C is 1.234x10^16 Hz . calculate the energy of 4 moles of photons belonging to line A (an answer must be given in kJ). D C B Increasing wavelength, A Aarrow_forwardSee Attachedarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax